Experimental Brain Research

, Volume 234, Issue 1, pp 51–65 | Cite as

Rubber hand presentation modulates visuotactile interference effect especially in persons with high autistic traits

  • Makoto WadaEmail author
  • Masakazu Ide
Research Article


Persons with high autistic traits showed diverse reactions as to their multisensory integration, whereas neurotypical persons adequately integrate visual and tactile information. Successive visual stimuli sometimes interfere ordering of successive tactile stimuli. Presentation of a hand-shaped object would affect the interference. Besides, its associations with autistic traits have not been reported. Here, we investigated the effect of a rubber hand presentation on interferences to tactile temporal order judgment by successive visual stimuli. We also investigated whether individual differences associated with autistic traits. A rubber hand was placed palm down in front of the participant in one condition, while in other conditions, it was inverted or was not presented. Participants were required to judge the temporal order of tactile stimuli presented to the index finger and ring finger of their unseen right hand, and needed to ignore the visual stimuli placed on the corresponding fingers of the rubber hand. When incongruent visual stimuli were delivered along with presentation of the rubber hand, the participant’s judgment was notably reversed. In contrast, the degree of reversals significantly decreased when the rubber hand was not presented or presented in an inverted direction. Additionally, we found that participants with high autistic traits tended to show large reversal with the rubber hand presentation, while they showed small reversal when the rubber hand was inverted. Our results suggest that rubber hand corresponding to one’s own hand facilitates visuotactile interference. Furthermore, autistic traits may affect the integration of visuotactile inputs when the rubber hand is presented.


Human Psychophysics Tactile temporal order judgment Cross-modal dynamic captures Visuotactile interference 



This study was partly supported by MEXT Grants (#15H01590), JSPS Grants (#26700012, 15K12615) and a research grant of HAYAO NAKAYAMA Foundation for Science & Technology and Culture to M. Wada. We would like to thank T. Nawa and M. Hiratsuka for technical assistance; Prof. S. Hidaka, Prof. S. Kitazawa, Prof. M. Miyazaki and Prof. S. Shibuya for their valuable comments and Dr. Y. Nakajima for his continuous encouragement.


  1. Azanon E, Soto-Faraco S (2007) Alleviating the ‘crossed-hands’ deficit by seeing uncrossed rubber hands. Exp Brain Res 182:537–548. doi: 10.1007/s00221-007-1011-3 PubMedCrossRefGoogle Scholar
  2. Azanon E, Soto-Faraco S (2008) Changing reference frames during the encoding of tactile events. Curr Biol 18:1044–1049. doi: 10.1016/j.cub.2008.06.045 PubMedCrossRefGoogle Scholar
  3. Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E (2001) The autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J Autism Dev Disord 31:5–17PubMedCrossRefGoogle Scholar
  4. Bertelson P, Aschersleben G (2003) Temporal ventriloquism: crossmodal interaction on the time dimension. 1. Evidence from auditory-visual temporal order judgment. Int J Psychophysiol 50:147–155PubMedCrossRefGoogle Scholar
  5. Cascio CJ, Foss-Feig JH, Burnette CP, Heacock JL, Cosby AA (2012) The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioception. Autism 16:406–419. doi: 10.1177/1362361311430404 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chen L, Zhou X (2011) Capture of intermodal visual/tactile apparent motion by moving and static sound. See Perceiving 24:369–389. doi: 10.1163/187847511X584434 CrossRefGoogle Scholar
  7. Craig JC (2006) Visual motion interferes with tactile motion perception. Perception 35:351–367PubMedCrossRefGoogle Scholar
  8. Egaas B, Courchesne E, Saitoh O (1995) Reduced size of corpus callosum in autism. Arch Neurol 52:794–801PubMedCrossRefGoogle Scholar
  9. Falter CM, Elliott MA, Bailey AJ (2012) Enhanced visual temporal resolution in autism spectrum disorders. PLoS ONE 7:e32774. doi: 10.1371/journal.pone.0032774PONE-D-11-23260 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Foss-Feig JH, Kwakye LD, Cascio CJ, Burnette CP, Kadivar H, Stone WL, Wallace MT (2010) An extended multisensory temporal binding window in autism spectrum disorders. Exp Brain Res 203:381–389. doi: 10.1007/s00221-010-2240-4 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111. doi: 10.1016/j.conb.2007.01.009 PubMedCrossRefGoogle Scholar
  12. Graziano MS (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA 96:10418–10421PubMedPubMedCentralCrossRefGoogle Scholar
  13. Graziano MS, Cooke DF, Taylor CS (2000) Coding the location of the arm by sight. Science 290:1782–1786PubMedCrossRefGoogle Scholar
  14. Hagen MC, Franzen O, McGlone F, Essick G, Dancer C, Pardo JV (2002) Tactile motion activates the human middle temporal/V5 (MT/V5) complex. Eur J Neurosci 16:957–964PubMedCrossRefGoogle Scholar
  15. Haswell CC, Izawa J, Dowell LR, Mostofsky SH, Shadmehr R (2009) Representation of internal models of action in the autistic brain. Nat Neurosci 12:970–972PubMedPubMedCentralCrossRefGoogle Scholar
  16. Holmes NP, Spence C (2004) The body schema and the multisensory representation(s) of peripersonal space. Cogn Process 5:94–105. doi: 10.1007/s10339-004-0013-3 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ide M, Hidaka S (2013) Visual presentation of hand image modulates visuo-tactile temporal order judgment. Exp Brain Res 228:43–50. doi: 10.1007/s00221-013-3535-z PubMedCrossRefGoogle Scholar
  18. Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7:2325–2330PubMedCrossRefGoogle Scholar
  19. Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821. doi: 10.1093/brain/awh199awh199 PubMedCrossRefGoogle Scholar
  20. Keetels M, Vroomen J (2005) The role of spatial disparity and hemifields in audio-visual temporal order judgments. Exp Brain Res 167:635–640. doi: 10.1007/s00221-005-0067-1 PubMedCrossRefGoogle Scholar
  21. Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11:1188–1191PubMedCrossRefGoogle Scholar
  22. Kitagawa N, Igarashi Y, Kashino M (2009) The tactile continuity illusion. J Exp Psychol Hum Percept Perform 35:1784–1790. doi: 10.1037/a0016891 PubMedCrossRefGoogle Scholar
  23. Kwakye LD, Foss-Feig JH, Cascio CJ, Stone WL, Wallace MT (2011) Altered auditory and multisensory temporal processing in autism spectrum disorders. Front Integr Neurosci 4:129. doi: 10.3389/fnint.2010.00129 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lloyd DM, Shore DI, Spence C, Calvert GA (2003) Multisensory representation of limb position in human premotor cortex. Nat Neurosci 6:17–18. doi: 10.1038/nn991nn991 PubMedCrossRefGoogle Scholar
  25. Lyons G, Sanabria D, Vatakis A, Spence C (2006) The modulation of crossmodal integration by unimodal perceptual grouping: a visuotactile apparent motion study. Exp Brain Res 174:510–516. doi: 10.1007/s00221-006-0485-8 PubMedCrossRefGoogle Scholar
  26. Makin TR, Holmes NP, Zohary E (2007) Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J Neurosci 27:731–740. doi: 10.1523/JNEUROSCI.3653-06.2007 PubMedCrossRefGoogle Scholar
  27. Oberman LM, Ramachandran VS, Pineda JA (2008) Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis. Neuropsychologia 46:1558–1565. doi: 10.1016/j.neuropsychologia.2008.01.010 PubMedCrossRefGoogle Scholar
  28. Omi T, Ide M, Hidaka S (2014) Effects of visual presentation of hand image on visuotactile temporal adaptation. International Multisensory Research Forum, AmsterdamGoogle Scholar
  29. O’Riordan M, Passetti F (2006) Discrimination in autism within different sensory modalities. J Autism Dev Disord 36:665–675. doi: 10.1007/s10803-006-0106-1 PubMedCrossRefGoogle Scholar
  30. Palmer CJ, Paton B, Hohwy J, Enticott PG (2013) Movement under uncertainty: the effects of the rubber-hand illusion vary along the nonclinical autism spectrum. Neuropsychologia 51:1942–1951. doi: 10.1016/j.neuropsychologia.2013.06.020 PubMedCrossRefGoogle Scholar
  31. Paton B, Hohwy J, Enticott PG (2012) The rubber hand illusion reveals proprioceptive and sensorimotor differences in autism spectrum disorders. J Autism Dev Disord 42:1870–1883. doi: 10.1007/s10803-011-1430-7 PubMedCrossRefGoogle Scholar
  32. Rizzolatti G, Fadiga L, Fogassi L, Gallese V (1997) The space around us. Science 277:190–191PubMedCrossRefGoogle Scholar
  33. Röder B, Rosler F, Spence C (2004) Early vision impairs tactile perception in the blind. Curr Biol 14:121–124PubMedCrossRefGoogle Scholar
  34. Sanabria D, Soto-Faraco S, Spence C (2005) Assessing the effect of visual and tactile distractors on the perception of auditory apparent motion. Exp Brain Res 166:548–558. doi: 10.1007/s00221-005-2395-6 PubMedCrossRefGoogle Scholar
  35. Sanabria D, Lupianez J, Spence C (2007a) Auditory motion affects visual motion perception in a speeded discrimination task. Exp Brain Res 178:415–421. doi: 10.1007/s00221-007-0919-y PubMedCrossRefGoogle Scholar
  36. Sanabria D, Soto-Faraco S, Spence C (2007b) Spatial attention and audiovisual interactions in apparent motion. J Exp Psychol Hum Percept Perform 33:927–937. doi: 10.1037/0096-1523.33.4.927 PubMedCrossRefGoogle Scholar
  37. Sanabria D, Spence C, Soto-Faraco S (2007c) Perceptual and decisional contributions to audiovisual interactions in the perception of apparent motion: a signal detection study. Cognition 102:299–310. doi: 10.1016/j.cognition.2006.01.003 PubMedCrossRefGoogle Scholar
  38. Shibuya S, Takahashi T, Kitazawa S (2007) Effects of visual stimuli on temporal order judgments of unimanual finger stimuli. Exp Brain Res 179:709–721. doi: 10.1007/s00221-006-0829-4 PubMedCrossRefGoogle Scholar
  39. Shore DI, Spry E, Spence C (2002) Confusing the mind by crossing the hands. Brain Res Cogn Brain Res 14:153–163PubMedCrossRefGoogle Scholar
  40. Soto-Faraco S, Azanon E (2013) Electrophysiological correlates of tactile remapping. Neuropsychologia 51:1584–1594. doi: 10.1016/j.neuropsychologia.2013.04.012 PubMedCrossRefGoogle Scholar
  41. Soto-Faraco S, Lyons J, Gazzaniga M, Spence C, Kingstone A (2002) The ventriloquist in motion: illusory capture of dynamic information across sensory modalities. Brain Res Cogn Brain Res 14:139–146PubMedCrossRefGoogle Scholar
  42. Soto-Faraco S, Spence C, Kingstone A (2004) Cross-modal dynamic capture: congruency effects in the perception of motion across sensory modalities. J Exp Psychol Hum Percept Perform 30:330–345. doi: 10.1037/0096-1523.30.2.330 PubMedCrossRefGoogle Scholar
  43. Spence C, Baddeley R, Zampini M, James R, Shore DI (2003) Multisensory temporal order judgments: when two locations are better than one. Percept Psychophys 65:318–328PubMedCrossRefGoogle Scholar
  44. Takahashi T, Kansaku K, Wada M, Shibuya S, Kitazawa S (2013) Neural correlates of tactile temporal-order judgment in humans: an fMRI study. Cereb Cortex 23:1952–1964PubMedCrossRefGoogle Scholar
  45. Vidal CN, Nicolson R, DeVito TJ et al (2006) Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol Psychiatry 60:218–225. doi: 10.1016/j.biopsych.2005.11.011 PubMedCrossRefGoogle Scholar
  46. Wada M, Yamamoto S, Kitazawa S (2004) Effects of handedness on tactile temporal order judgment. Neuropsychologia 42:1887–1895. doi: 10.1016/j.neuropsychologia.2004.05.009 PubMedCrossRefGoogle Scholar
  47. Wada M, Takano K, Ikegami S, Ora H, Spence C, Kansaku K (2012) Spatio-temporal updating in the left posterior parietal cortex. PLoS ONE 7:e39800. doi: 10.1371/journal.pone.0039800PONE-D-11-20755 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Wada M, Suzuki M, Takaki A, Miyao M, Spence C, Kansaku K (2014) Spatio-temporal processing of tactile stimuli in autistic children. Sci Rep 4:5985. doi: 10.1038/srep05985 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Wakabayashi A, Tojo Y, Baron-Cohen S, Wheelwright S (2004) The Autism-Spectrum Quotient (AQ) Japanese version: evidence from high-functioning clinical group and normaladults. Jpn J Psychol 75:78–84CrossRefGoogle Scholar
  50. Williams JH (2008) Self-other relations in social development and autism: multiple roles for mirror neurons and other brain bases. Autism Res 1:73–90. doi: 10.1002/aur.15 PubMedCrossRefGoogle Scholar
  51. Yamamoto S, Kitazawa S (2001a) Reversal of subjective temporal order due to arm crossing. Nat Neurosci 4:759–765. doi: 10.1038/8955989559 PubMedCrossRefGoogle Scholar
  52. Yamamoto S, Kitazawa S (2001b) Sensation at the tips of invisible tools. Nat Neurosci 4:979–980. doi: 10.1038/nn721 PubMedCrossRefGoogle Scholar
  53. Yamamoto S, Moizumi S, Kitazawa S (2005) Referral of tactile sensation to the tips of L-shaped sticks. J Neurophysiol 93:2856–2863. doi: 10.1152/jn.01015.2004 PubMedCrossRefGoogle Scholar
  54. Zampini M, Shore DI, Spence C (2003) Audiovisual temporal order judgments. Exp Brain Res 152:198–210. doi: 10.1007/s00221-003-1536-z PubMedCrossRefGoogle Scholar
  55. Zopf R, Friedman J, Williams MA (2015) The plausibility of visual information for hand ownership modulates multisensory synchrony perception. Exp Brain Res. doi: 10.1007/s00221-015-4300-2 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Developmental Disorders Section, Department of Rehabilitation for Brain FunctionsResearch Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawaJapan
  2. 2.Japan Society for the Promotion of Science (JSPS)ChiyodaJapan

Personalised recommendations