Experimental Brain Research

, Volume 233, Issue 12, pp 3597–3611 | Cite as

Analysis of hand kinematics reveals inter-individual differences in intertemporal decision dynamics

  • Cinzia Calluso
  • Giorgia Committeri
  • Giovanni Pezzulo
  • Nathan Lepora
  • Annalisa Tosoni
Research Article


During intertemporal decisions, the preference for smaller, sooner reward over larger-delayed rewards (temporal discounting, TD) exhibits substantial inter-subject variability; however, it is currently unclear what are the mechanisms underlying this apparently idiosyncratic behavior. To answer this question, here we recorded and analyzed mouse movement kinematics during intertemporal choices in a large sample of participants (N = 86). Results revealed a specific pattern of decision dynamics associated with the selection of “immediate” versus “delayed” response alternatives, which well discriminated between a “discounter” versus a “farsighted” behavior—thus representing a reliable behavioral marker of TD preferences. By fitting the Drift Diffusion Model to the data, we showed that differences between discounter and farsighted subjects could be explained in terms of different model parameterizations, corresponding to the use of different choice mechanisms in the two groups. While farsighted subjects were biased toward the “delayed” option, discounter subjects were not correspondingly biased toward the “immediate” option. Rather, as shown by the dynamics of evidence accumulation over time, their behavior was characterized by high choice uncertainty.


Choice behavior Decision making Mathematical models 



We wish to thank Giulia Piraino for her help during data collection.


Research funded by the EU’s FP7 under Grant Agreement No FP7-ICT-270108 and the HFSP under Grant Agreement RGY0088/2014 to GP, and University G. d’Annunzio research funds to GC.

Author contribution

C. C., A. T., G. P and G. C. designed research; C. C. performed research; C. C., A. T., and N. L. analyzed data; and C. C., A. T., G. P., N. L. and G. C. wrote the paper.


  1. Abboud H, Schultz W, Zeitlin V (2006) SuperLab, stimulus presentation software (Version 4.0)Google Scholar
  2. Ainslie G (1975) Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol Bull 82:257–272CrossRefGoogle Scholar
  3. Barca L, Pezzulo G (2012) Unfolding visual lexical decision in time. PLoS One 7:e35932. doi: 10.1371/journal.pone.0035932 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Barca L, Pezzulo G (2015) Tracking second thoughts: continuous and discrete revision processes during visual lexical decision. PLoS One 10:e0116193. doi: 10.1371/journal.pone.0116193 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Berns GS, Laibson D, Loewenstein G (2007) Intertemporal choice: toward an integrative framework. Trends Cogn Sci 11:482–488. doi: 10.1016/j.tics.2007.08.011 CrossRefPubMedGoogle Scholar
  6. Calluso C, Tosoni A, Pezzulo G et al (2015) Interindividual variability in functional connectivity as long-term correlate of temporal discounting. PLoS One 10:e0119710. doi: 10.1371/journal.pone.0119710 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Chabris CF, Laibson DI, Schuldt JP (2008) Intertemporal choice. In: Durlauf SN, Blume LE (eds) The new palgrave dictionary of economics, 2nd edn. Palgrave Macmillan, BasingstokeGoogle Scholar
  8. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8:1704–1711CrossRefPubMedGoogle Scholar
  9. Dshemuchadse M, Scherbaum S, Goschke T (2012) How decisions emerge: action dynamics in intertemporal decision making. J Exp Psychol Gen 142:93–100. doi: 10.1037/a0028499 CrossRefPubMedGoogle Scholar
  10. Figner B, Knoch D, Johnson EJ et al (2010) Lateral prefrontal cortex and self-control in intertemporal choice. Nat Neurosci 13:538–539. doi: 10.1038/nn.2516 CrossRefPubMedGoogle Scholar
  11. Fossati A, Di Ceglie A, Acquarini E, Barratt ES (2001) Psychometric properties of an Italian version of the Barratt Impulsiveness Scale-11 (BIS-11) in nonclinical subjects. J Clin Psychol 57:815–828CrossRefPubMedGoogle Scholar
  12. Freeman JB, Ambady N (2010) MouseTracker: software for studying real-time mental processing using a computer mouse-tracking method. Behav Res Methods 42:226–241. doi: 10.3758/BRM.42.1.226 CrossRefPubMedGoogle Scholar
  13. Freeman JB, Ambady N, Rule NO, Johnson KL (2008) Will a category cue attract you? Motor output reveals dynamic competition across person construal. J Exp Psychol Gen 137:673–690. doi: 10.1037/a0013875 CrossRefPubMedGoogle Scholar
  14. Freeman JB, Ambady N, Midgley KJ, Holcomb PJ (2011a) The real-time link between person perception and action: brain potential evidence for dynamic continuity. Soc Neurosci 6:139–155. doi: 10.1080/17470919.2010.490674 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Freeman JB, Dale R, Farmer TA (2011b) Hand in motion reveals mind in motion. Front Psychol 2:59. doi: 10.3389/fpsyg.2011.00059 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Gianotti LRR, Figner B, Ebstein RP, Knoch D (2012) Why some people discount more than others: baseline activation in the dorsal PFC mediates the link between COMT genotype and impatient choice. Front Neurosci 6:54. doi: 10.3389/fnins.2012.00054 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Green L, Myerson J (1996) Exponential versus hyperbolic discounting of delayed outcomes: risk and waiting time. Am Zool 505:496–505CrossRefGoogle Scholar
  18. Hamilton M (1960) Rating Scale for depression. J Neurol Neurosurg Psychiatry 23:56–62PubMedCentralCrossRefPubMedGoogle Scholar
  19. Haxby JV, Parasuramen R, Lalonde F, Abboud H (1993) SuperLab: general-purpose Macintosh software for human experimental psychology and psychological testing. Behav Res Methods 25:400–405CrossRefGoogle Scholar
  20. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares. Commun Stat Theory Methods 6:813–827CrossRefGoogle Scholar
  21. Johnson MW, Bickel WK (2002) Within-subject comparison of real and hypothetical money rewards in delay discounting. J Exp Anal Behav 77:129–146. doi: 10.1901/jeab.2002.77-129 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Kable JW, Glimcher PW (2007) The neural correlates of subjective value during intertemporal choice. Nat Neurosci 10:1625–1633. doi: 10.1038/nn2007 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Kirby KN, Petry NM, Kirby K (2004) Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99:461–471CrossRefPubMedGoogle Scholar
  24. Kobak KA, Reynolds WM, Maruish ME (1999) Hamilton depression inventory. The use of psychological testing for treatment planning and outcomes assessment, 2nd edn. Lawrence Erlbaum Associates Publisherssogs, Mahwah, pp 935–969Google Scholar
  25. Lagorio CH, Madden GJ (2005) Delay discounting of real and hypothetical rewards III: steady-state assessments, forced-choice trials, and all real rewards. Behav Processes 69:173–187. doi: 10.1016/j.beproc.2005.02.003 CrossRefPubMedGoogle Scholar
  26. Laibson D (1997) Golden eggs and hyperbolic discounting*. Q J Econ 62:443–477CrossRefGoogle Scholar
  27. Lepora NF, Pezzulo G (2015) Embodied choice: how action influences perceptual decision making. PLoS Comput Biol 11:e1004110. doi: 10.1371/journal.pcbi.1004110 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Lesieur HR, Blume SB (1987) The South Oaks Gambling Screen (SOGS): a new instrument for the identification of pathological gamblers. Am J Psychiatry 144:1184–1188CrossRefPubMedGoogle Scholar
  29. Madden GJ, Begotka AM, Raiff BR, Kastern LL (2003) Delay discounting of real and hypothetical rewards. Exp Clin Psychopharmacol 11:139–145CrossRefPubMedGoogle Scholar
  30. Madden GJ, Raiff BR, Lagorio CH et al (2004) Delay discounting of potentially real and hypothetical rewards: II. between- and within-subject comparisons. Exp Clin Psychopharmacol 12:251–261CrossRefPubMedGoogle Scholar
  31. Mazur JE (1987) An adjusting procedure for studying delayed reinforcement. In: Commons M, Mazur J, Nevin J, Rachlin H (eds) The effect of delay and of intervening events of reinforcement value. Quantitative analysis of behavior, Vol 5. Erlbaum, Hillsdale, pp 57–73Google Scholar
  32. McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507. doi: 10.1126/science.1100907 CrossRefPubMedGoogle Scholar
  33. Mitchell SH (1999) Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology 146:455–464CrossRefPubMedGoogle Scholar
  34. Monterosso J, Ainslie G (1999) Beyond discounting possible experimental models of impulse control. Psychopharmacology 146:339–347CrossRefPubMedGoogle Scholar
  35. O’Leary DP (1990) Robust regression computation using iteratively reweighted least squares. SIAM J Matrix Anal Appl 11:466–480CrossRefGoogle Scholar
  36. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515–532. doi: 10.1152/jn.00587.2002 CrossRefPubMedGoogle Scholar
  37. Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51(6):768–774CrossRefPubMedGoogle Scholar
  38. Paulus MP, Yu AJ (2012) Emotion and decision-making: affect-driven belief systems in anxiety and depression. Trends Cogn Sci 16:476–483. doi: 10.1016/j.tics.2012.07.009 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Peters J, Büchel C (2011) The neural mechanisms of inter-temporal decision-making: understanding variability. Trends Cogn Sci 15:227–239. doi: 10.1016/j.tics.2011.03.002 CrossRefPubMedGoogle Scholar
  40. Pezzulo G, Rigoli F (2011) The value of foresight: how prospection affects decision-making. Front Neurosci 5:1–15. doi: 10.3389/fnins.2011.00079 CrossRefGoogle Scholar
  41. Pezzulo G, Rigoli F, Chersi F (2013) The mixed instrumental controller: using value of Information to combine habitual choice and mental simulation. Front Cogn 4:1–15Google Scholar
  42. Philiastides MG, Auksztulewicz R, Heekeren HR, Blankenburg F (2011) Causal role of dorsolateral prefrontal cortex in human perceptual decision making. Curr Biol 21:980–983. doi: 10.1016/j.cub.2011.04.034 CrossRefPubMedGoogle Scholar
  43. Quinton J, Volpi NC, Barca L, Pezzulo G (2013) The cat is on the mat. Or is it a dog? Dynamic competition in perceptual decision making. IEEE Trans Syst Man Cybern Part A Syst 44:539–551CrossRefGoogle Scholar
  44. Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 922:873–922CrossRefGoogle Scholar
  45. Ratcliff R, Rouder JN (1998) Modeling response times for two-choice decisions. Psychol Sci 9:347–356CrossRefGoogle Scholar
  46. Reynolds B, Ortengren A, Richards JB, de Wit H (2006) Dimensions of impulsive behavior: personality and behavioral measures. Pers Individ Dif 40:305–315. doi: 10.1016/j.paid.2005.03.024 CrossRefGoogle Scholar
  47. Sestieri C, Tosoni A, Mignogna V et al (2014) Memory accumulation mechanisms in human cortex are independent of motor intentions. J Neurosci 34:6993–7006. doi: 10.1523/JNEUROSCI.3911-13.2014 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Song J-H, Nakayama K (2009) Hidden cognitive states revealed in choice reaching tasks. Trends Cogn Sci 13:360–366. doi: 10.1016/j.tics.2009.04.009 CrossRefPubMedGoogle Scholar
  49. Spielberger CD, Gorsuch RL, Lushene RE (1970) The State trait anxiety inventory (STAI). Test manual for form X. Consulting Psychologist Press, Palo Alto. Trad. It. S.T.A.I. Questionario di autovalutazione dell’ansia di stato e di tratto a cura di Pedrabissi e Santinello (1989)Google Scholar
  50. Spivey MJ (2007) On the continuity of mind. Oxford University Press, USAGoogle Scholar
  51. Sullivan N, Hutcherson C, Harris A, Rangel A (2014) Dietary Self-control is related to the speed with which attributes of healthfulness and tastiness are processed. Psychol Sci 26:122–134. doi: 10.1177/0956797614559543 CrossRefPubMedGoogle Scholar
  52. Summerfield C, Tsetsos K (2012) Building bridges between perceptual and economic decision-making: neural and computational mechanisms. Front Neurosci 6:1–20. doi: 10.3389/fnins.2012.00070 CrossRefGoogle Scholar
  53. Van den Bos W, McClure SM (2013) Towards a general model of temporal discounting. J Exp Anal Behav 99:58–73. doi: 10.1002/jeab.6 CrossRefPubMedGoogle Scholar
  54. Vandekerckhove J, Tuerlinckx F (2007) Fitting the Ratcliff diffusion model. Psychon Bull Rev 14:1011–1026CrossRefPubMedGoogle Scholar
  55. Vandekerckhove J, Tuerlinckx F (2008) Diffusion model analysis with MATLAB: a DMAT primer. Behav Res Methods 40:61–72CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Cinzia Calluso
    • 1
    • 2
  • Giorgia Committeri
    • 1
    • 2
  • Giovanni Pezzulo
    • 3
  • Nathan Lepora
    • 4
    • 5
  • Annalisa Tosoni
    • 1
    • 2
  1. 1.Department of Neuroscience, Imaging and Clinical SciencesG. D’Annunzio UniversityChieti ScaloItaly
  2. 2.Institute for Advanced Biomedical TechnologiesG. D’Annunzio UniversityChieti ScaloItaly
  3. 3.Institute of Cognitive Sciences and Technologies National Research CouncilRomeItaly
  4. 4.Department of Engineering MathematicsUniversity of BristolBristolUK
  5. 5.Bristol Robotics Laboratory (BRL)University of Bristol and University of the West of EnglandBristolUK

Personalised recommendations