Experimental Brain Research

, Volume 233, Issue 12, pp 3565–3581 | Cite as

Biomechanical metrics of aesthetic perception in dance

  • Shaw BronnerEmail author
  • James Shippen
Research Article


The brain may be tuned to evaluate aesthetic perception through perceptual chunking when we observe the grace of the dancer. We modelled biomechanical metrics to explain biological determinants of aesthetic perception in dance. Eighteen expert (EXP) and intermediate (INT) dancers performed développé arabesque in three conditions: (1) slow tempo, (2) slow tempo with relevé, and (3) fast tempo. To compare biomechanical metrics of kinematic data, we calculated intra-excursion variability, principal component analysis (PCA), and dimensionless jerk for the gesture limb. Observers, all trained dancers, viewed motion capture stick figures of the trials and ranked each for aesthetic (1) proficiency and (2) movement smoothness. Statistical analyses included group by condition repeated-measures ANOVA for metric data; Mann–Whitney U rank and Friedman’s rank tests for nonparametric rank data; Spearman’s rho correlations to compare aesthetic rankings and metrics; and linear regression to examine which metric best quantified observers’ aesthetic rankings, p < 0.05. The goodness of fit of the proposed models was determined using Akaike information criteria. Aesthetic proficiency and smoothness rankings of the dance movements revealed differences between groups and condition, p < 0.0001. EXP dancers were rated more aesthetically proficient than INT dancers. The slow and fast conditions were judged more aesthetically proficient than slow with relevé (p < 0.0001). Of the metrics, PCA best captured the differences due to group and condition. PCA also provided the most parsimonious model to explain aesthetic proficiency and smoothness rankings. By permitting organization of large data sets into simpler groupings, PCA may mirror the phenomenon of chunking in which the brain combines sensory motor elements into integrated units of behaviour. In this representation, the chunk of information which is remembered, and to which the observer reacts, is the elemental mode shape of the motion rather than physical displacements. This suggests that reduction in redundant information to a simplistic dimensionality is related to the experienced observer’s aesthetic perception.


Akaike Information Criteria Chunking Dimensionless jerk Principal component analysis Variability 



We thank the participating dancers and other volunteers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

221_2015_4424_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (DOCX 59 kb)

Supplementary material 2 (MP4 2785 kb)

221_2015_4424_MOESM3_ESM.mp4 (3.2 mb)
Supplementary material 3 (MP4 3325 kb)


  1. Abernathy B, Zawi K, Jackson RC (2008) Expertise and attunement to kinematic constraints. Perception 37:931–948CrossRefGoogle Scholar
  2. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116CrossRefPubMedGoogle Scholar
  3. Angioi M, Metsios GS, Twitchett E, Koutedakis Y, Wyon M (2009) Association between selected physical fitness parameters and esthetic competence in contemporary dancers. J Dance Med Sci 13:115–123PubMedGoogle Scholar
  4. Autere A (2013) The feeling balletbody. Dorrance Publishing Co Inc, PittsburghGoogle Scholar
  5. Balasubramanian S, Melendez-Calderon A, Burdet E (2012) A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Biomed Eng 59:2126–2136. doi: 10.1109/TBME.2011.2179545 CrossRefPubMedGoogle Scholar
  6. Bläsing BE (2014) Segmentation of dance movement: effects of expertise, visual familiarity, motor experience and music. Front Psychol 5:1500 doi: 10.3389/fpsyg.2014.01500
  7. Bläsing B, Calvo-Merino B, Cross ES, Jola C, Honisch J, Stevens CJ (2012) Neurocognitive control in dance perception and performance. Acta Psychol 139:300–308. doi: 10.1016/j.actpsy.2011.12.005 CrossRefGoogle Scholar
  8. Bronner S (2012) Differences in segmental coordination and postural control in a multi-joint dance movement: developpe arabesque. J Dance Med Sci 16:26–35PubMedGoogle Scholar
  9. Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex 15:1243–1249. doi: 10.1093/cercor/bhi007 CrossRefPubMedGoogle Scholar
  10. Calvo-Merino B, Jola C, Glaser DE, Haggard P (2008) Towards a sensorimotor aesthetics of performing art. Conscious Cogn 17:911–922. doi: 10.1016/j.concog.2007.11.003 CrossRefPubMedGoogle Scholar
  11. Calvo-Merino B, Ehrenberg S, Leung D, Haggard P (2010) Experts see it all: configural effects in action observation. Psychol Res 74:400–406. doi: 10.1007/s00426-009-0262-y CrossRefPubMedGoogle Scholar
  12. Chatfield SJ, Byrnes WC (1990) Correlational analysis of aesthetic competency, skill acquisition and physiologic capabilities of modern dancers. In: 5th Hong Kong international dance conference Hong Kong. The Secretariat of the Hong Kong Academy for the Performing Arts, pp 79–100Google Scholar
  13. Chatterjee A (2003) Prospects for a cognitive neuroscience of visual aesthetics. Bull Psychol Arts 4:55–60Google Scholar
  14. Chen JL, Penhune VB, Zatorre RJ (2008) Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J Cogn Neurosci 20:226–239. doi: 10.1162/jocn.2008.20018 CrossRefPubMedGoogle Scholar
  15. Chow JY, Davids K, Button C, Koh M (2008) Coordination changes in a discrete multi-articular action as a function of practice. Acta Psychol 127:163–176. doi: 10.1016/j.actpsy.2007.04.002 CrossRefGoogle Scholar
  16. Christensen JF, Nadal M, Cela-Conde CJ (2014) A norming study and library of 203 dance movements. Perception 43:178–206CrossRefPubMedGoogle Scholar
  17. Cohen SJ (1997) Dance and the question of fidelity. J Aesthet Educ 31:51–53CrossRefGoogle Scholar
  18. Cross I (2012) Cognitive science and the cultural nature of music. Top Cogn Sci 4:668–677. doi: 10.1111/j.1756-8765.2012.01216.x CrossRefPubMedGoogle Scholar
  19. Cross ES, Hamilton AF, Grafton ST (2006) Building a motor simulation de novo: observation of dance by dancers. Neuroimage 31:1257–1267. doi: 10.1016/j.neuroimage.2006.01.033 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Cross ES, Kirsch L, Ticini LF, Schutz-Bosbach S (2011a) The impact of aesthetic evaluation and physical ability on dance perception. Front Hum Neurosci 5:102. doi: 10.3389/fnhum.2011.00102 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Cross ES, Kirsch LP, Ticini LF, Schütz-Bosbach S (2011b) The impact of aesthetice evaluation and physical ability on dance perception. Front Hum Neurosci 5:1–10. doi: 10.3389/fnhum.2011.00102 CrossRefGoogle Scholar
  22. Daffertshofer A, Lamoth CJ, Meijer OG, Beek PJ (2004) PCA in studying coordination and variability: a tutorial. Clin Biomech (Bristol, Avon) 19:415–428 doi: 10.1016/j.clinbiomech.2004.01.005
  23. Daprati E, Iosa M, Haggard P (2009) A dance to the music of time: aesthetically-relevant changes in body posture in performing art. PLoS One 4:e5023. doi: 10.1371/journal.pone.0005023 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Díaz-Pereira MP, Gómez-Conde I, Escalona M, Olivieri DN (2014) Automatic recognition and scoring of olympic rhythmic gymnastic movements. Hum Mov Sci 34:63–80. doi: 10.1016/j.humov.2014.01.001 CrossRefPubMedGoogle Scholar
  25. Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703PubMedGoogle Scholar
  26. Friedman J, Flash T (2009) Trajectory of the index finger during grasping. Exp Brain Res 196:497–509. doi: 10.1007/s00221-009-1878-2 CrossRefPubMedGoogle Scholar
  27. Gobet F (2005) Chunking models of expertise: implications for education. Appl Cogn Psychol 19:183–204CrossRefGoogle Scholar
  28. Hagendoorn I (2005) Dance perception and the brain. In: Grove R, Stevens C, McKenchnie S (eds) Thinking in four dimensions: creativity and cognition in contemporary dance. Melbourne University Press, Melbourne, p 211Google Scholar
  29. Hamill J, van Emmerik RE, Heiderscheit BC, Li L (1999) A dynamical systems approach to lower extremity running injuries. Clin Biomech 14:297–308CrossRefGoogle Scholar
  30. Hamill J, McDermott WJ, Haddad JM (2000) Issues in quantifying variability from a dynamical systems perspective. J Appl Biomech 16:407–418Google Scholar
  31. Hayes AE, Paul MA, Beuger B, Tipper SP (2008) Self produced and observed actions influence emotion: the roles of action fluency and eye gaze. Psychol Res 72:461–472. doi: 10.1007/s00426-007-0125-3 CrossRefPubMedGoogle Scholar
  32. Hein T, Schmeltzpfenning T, Krauss I, Maiwald C, Horstmann T, Grau S (2012) Using the variability of continuous relative phase as a measure to discriminate between healthy and injured runners. Hum Mov Sci 31:683–694. doi: 10.1016/j.humov.2011.07.008 CrossRefPubMedGoogle Scholar
  33. Hogan N, Flash T (1987) Moving gracefully: quantitative theories of motor coordination. TINS 10:170–174. doi: 10.1016/0166-2236(87)90043-9 Google Scholar
  34. Hogan N, Sternad D (2009) Sensitivity of smoothness measures to movement duration, amplitude, and arrests. J Mot Behav 41:529–534. doi: 10.3200/35-09-004-RC PubMedCentralCrossRefPubMedGoogle Scholar
  35. Hollands K, Wing A, Daffertshofer A (2004) Principal components analysis of contemporary dance kinematics. In: Proceedings of the 3rd IEEE EMBSS UK & RI postgraduate conference in biomedical engineering & medical physics. University of Southampton, UKGoogle Scholar
  36. Hong SL, Newell KM (2006) Change in the organization of degrees of freedom with learning. J Mot Behav 38:88–100. doi: 10.3200/JMBR.38.2.88-100 CrossRefPubMedGoogle Scholar
  37. Hreljac A (1993) The relationship between smoothness and performance during the practice of a lower limb obstacle avoidance task. Biol Cybern 68:375–379CrossRefPubMedGoogle Scholar
  38. Hreljac A (2000) Stride smoothness evaluation of runners and other athletes. Gait Posture 11:199–206CrossRefPubMedGoogle Scholar
  39. Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6:682–687. doi: 10.1038/nn1081 CrossRefPubMedGoogle Scholar
  40. Jarvis DN, Smith JA, Kulig K (2014) Trunk coordination in dancers and nondancers. J Appl Biomech 30:547–554. doi: 10.1123/jab.2013-0329 CrossRefPubMedGoogle Scholar
  41. Jola C, Grosbras MH (2013) In the here and now: enhanced motor corticospinal excitability in novices when watching live compared to video recorded dance. Cogn Neurosci 4:90–98. doi: 10.1080/17588928.2013.776035 CrossRefPubMedGoogle Scholar
  42. Jolliffe IT (2002) Principal component analysis. Springer series in statistics, 2nd ed. Springer, New YorkGoogle Scholar
  43. Kavanagh JJ (2009) Lower trunk motion and speed-dependence during walking. J Neuroeng Rehabil 6:9. doi: 10.1186/1743-0003-6-9 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Kiefer AW, Riley MA, Shockley K, Sitton CA, Hewett TE, Cummins-Sebree S, Haas JG (2011) Multi-segmental postural coordination in professional ballet dancers. Gait Posture 34:76–80. doi: 10.1016/j.gaitpost.2011.03.016 CrossRefPubMedGoogle Scholar
  45. Kiefer AW et al (2013) Inter-segmental postural coordination measures differentiate athletes with ACL reconstruction from uninjured athletes. Gait Posture 37:149–153. doi: 10.1016/j.gaitpost.2012.05.005 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Kirsch LP, Drommelschmidt KA, Cross ES (2013) The impact of sensorimotor experience on affective evaluation of dance. Front Hum Neurosci 7:1–10. doi: 10.3389/fnhum.2013.00521 CrossRefGoogle Scholar
  47. Ko YG, Challis JH, Newell KM (2003) Learning to coordinate redundant degrees of freedom in a dynamic balance task. Hum Mov Sci 22:47–66CrossRefPubMedGoogle Scholar
  48. Krasnow D, Chatfield SJ (2009) Development of the “performance competence evaluation measure”: assessing qualitative aspects of dance performance. J Dance Med Sci 13:101–107PubMedGoogle Scholar
  49. Kraus RG, Hilsendager SC, Gottschild BD (1991) The meaning of dance. In: History of the dance in art and education, 3rd edn. Prentise Hall, Upper Saddle River, p 420Google Scholar
  50. Kwon Y-H, Wilson M, Ryu J-H (2007) Analysis of the hip joint moments in grand rond de jambe en l’air. J Dance Med Sci 11:93–99Google Scholar
  51. Land WM, Volchenkov D, Blasing BE, Schack T (2013) From action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control. Front Comput Neurosci 7:127. doi: 10.3389/fncom.2013.00127 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Leder H, Belke B, Oeberst A, Augustin D (2004) A model of aesthetic appreciation and aesthetic judgments. Br J Psychol 95:489–508. doi: 10.1348/0007126042369811 CrossRefPubMedGoogle Scholar
  53. Looney MA (2004) Evaluating judge performance in sport. J Appl Meas 5:31–47PubMedGoogle Scholar
  54. Miura N et al (2010) Effect of motion smoothness on brain activity while observing a dance: an fMRI study using a humanoid robot. Soc Neurosci 5:40–58. doi: 10.1080/17470910903083256 CrossRefPubMedGoogle Scholar
  55. Montero B (2012) Practice makes perfect: the effect of dance training on the aesthetic judge. Phenom Cogn Sci 11:59–68CrossRefGoogle Scholar
  56. Orgs G, Hagura N, Haggard P (2013) Learning to like it: aesthetic perception of bodies, movements and choreographic structure. Conscious Cogn 22:603–612CrossRefPubMedGoogle Scholar
  57. Pajek MB, Cuk I, Pajek J, Kovac M, Leskosek B (2013) Is the quality of judging in women artistic gymnastics equivalent at major competitions of different levels? J Hum Kinet 37:173–181. doi: 10.2478/hukin-2013-0038 PubMedCentralPubMedGoogle Scholar
  58. Pollard CD, Heiderscheit BC, van Emmerik RE, Hamill J (2005) Gender differences in lower extremity coupling variability during an unanticipated cutting maneuver. J Appl Biomech 21:143–152PubMedGoogle Scholar
  59. Reber R, Schwarz N, Winkielman P (2004) Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Pers Soc Psychol Rev 8:364–382. doi: 10.1207/s15327957pspr0804_3 CrossRefPubMedGoogle Scholar
  60. Reeve HK, Hopper LS, Elliott BC, Ackland TR (2013) Lower limb kinematic variability in dancers performing drop landings onto floor surfaces with varied mechanical properties. Hum Mov Sci 32:866–874. doi: 10.1016/j.humov.2013.07.009 CrossRefPubMedGoogle Scholar
  61. Rohrer B et al (2002) Movement smoothness changes during stroke recovery. J Neurosci 22:8297–8304PubMedGoogle Scholar
  62. Sakai K, Hikosaka O, Nakamura K (2004) Emergence of rhythm during motor learning. Trends Cogn Sci 8:547–553. doi: 10.1016/j.tics.2004.10.005 CrossRefPubMedGoogle Scholar
  63. Sato N, Nunome H, Ikegami Y (2014) Key features of hip hop dance motions affect evaluation by judges. J Appl Biomech 30:439–445. doi: 10.1123/jab.2013-0190 CrossRefPubMedGoogle Scholar
  64. Schneider K, Zernicke RF (1989) Jerk-cost modulations during the practice of rapid arm movements. Biol Cybern 60:221–230CrossRefPubMedGoogle Scholar
  65. Seay JF, Van Emmerik RE, Hamill J (2011) Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin Biomech 26:572–578. doi: 10.1016/j.clinbiomech.2010.11.012 CrossRefGoogle Scholar
  66. Sevdalis V, Keller PE (2011) Perceiving performer identity and intended expression intensity in point-light displays of dance. Psychol Res 75:423–434. doi: 10.1007/s00426-010-0312-5 CrossRefPubMedGoogle Scholar
  67. Smith JA, Siemienski A, Popovich JM, Kulig K (2012) Intra-task variability of trunk coordination during a rate-controlled bipedal dance jump. J Sports Sci 30:139–147CrossRefPubMedGoogle Scholar
  68. Stergiou N, Decker LM (2011) Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum Mov Sci 30:869–888. doi: 10.1016/j.humov.2011.06.002 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Stevens CJ et al (2009) Cognition and the temporal arts: investigating audience response to dance using PDAs that record continuous data during live performance. Int J Hum Comput Stud 67:800–813CrossRefGoogle Scholar
  70. Stevens C, Winskel H, Howell C, Vidal LM, Latimer C, Milne-Home J (2010a) Perceiving dance: schematic expectations guide experts’ scanning of a contemporary dance film. J Dance Med Sci 14:19–25PubMedGoogle Scholar
  71. Stevens CJ, Ginsborg J, Lester G (2010b) Backwards and forwards in space and time: recalling dance movement from long-term memory. Mem Stud 4:234–250. doi: 10.1177/1750698010387018 CrossRefGoogle Scholar
  72. Tegmark M (2008) The mathematical universe. Found Phys 38:101–150CrossRefGoogle Scholar
  73. Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH (1997) Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol 146:159–170. doi: 10.1006/exnr.1997.6507 CrossRefPubMedGoogle Scholar
  74. Torrents C, Castañer M, Jofre T, Morey G, Reverter F (2013) Kinematic parameters that influence the aesthetic perception of beauty in contemporary dance. Perception 42:447–458CrossRefPubMedGoogle Scholar
  75. Tseng YW, Scholz JP, Schoner G, Hotchkiss L (2003) Effect of accuracy constraint on joint coordination during pointing movements. Exp Brain Res 149:276–288. doi: 10.1007/s00221-002-1357-5 PubMedGoogle Scholar
  76. Vincs K, Barbour K (2014) Snapshots of complexity: using motion capture and principal component analysis to reconceptualise dance. Digit Creat 25:62–78CrossRefGoogle Scholar
  77. Volchenkov D, Bläsing B (2013) Spatio-temporal analysis of kinematic signals in classical ballet. J Comput Sci 4:285–292CrossRefGoogle Scholar
  78. Volchenkov D, Bläsing BE, Schack T (2014) Spatio-temporal kinematic decomposition of movements. Engineering 6:385–398 doi: 10.4236/eng.2014.68041
  79. Wagner H, Pfusterschmied J, Klous M, von Duvillard SP, Muller E (2012) Movement variability and skill level of various throwing techniques. Hum Mov Sci 31:78–90. doi: 10.1016/j.humov.2011.05.005 CrossRefPubMedGoogle Scholar
  80. Wilson M, Lim B-O, Kim Y-H (2004) Rond de jambe en l’air skilled versus novice ballet dancers. J Dance Med Sci 8:108–115Google Scholar
  81. Wilson C, Simpson SE, van Emmerik RE, Hamill J (2008) Coordination variability and skill development in expert triple jumpers. Sports Biomech 7:2–9CrossRefPubMedGoogle Scholar
  82. Yan JH, Dick MB (2006) Practice effects on motor control in healthy seniors and patients with mild cognitive impairment and Alzheimer’s disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 13:385–410. doi: 10.1080/138255890969609 CrossRefPubMedGoogle Scholar
  83. Young C, Reinkensmeyer DJ (2014) Judging complex movement performances for excellence: a principal components analysis-based technique applied to competitive diving. Hum Mov Sci 36:107–122. doi: 10.1016/j.humov.2014.05.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.ADAM CenterBrooklynUSA
  2. 2.Brain Function Laboratory, Department of PsychiatryYale University School of MedicineNew HavenUSA
  3. 3.Department of Industrial DesignCoventry UniversityCoventryUK

Personalised recommendations