Experimental Brain Research

, Volume 233, Issue 12, pp 3367–3377 | Cite as

Relative errors can cue absolute visuomotor mappings

  • Loes C. J. van DamEmail author
  • Marc O. Ernst
Research Article


When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping.


Perception and action Visuomotor learning Dual adaptation Error Learning Mapping Learning 



This research was supported by the Human Frontier Science Program, the DFG Cluster of Excellence: Cognitive Interaction Technology “CITEC” (EXC 277) and EU Grant No. 601165 “WEARHAP”. The experiments were conducted at the Max Planck Institute for Biological Cybernetics in Tübingen Germany. The authors thank David Hawellek for his help with data collection, and Cesare Parise for helpful comments on an earlier version of the manuscript.


  1. Bingham GP, Romack JL (1999) The rate of adaptation to displacement prisms remains constant despite acquisition of rapid calibration. J Exp Psychol Hum Percept Perform 25(5):1331–1346CrossRefGoogle Scholar
  2. Donderi DC, Jolicoeur P, Berg I, Grimes R (1985) A color-contingent prism displacement aftereffect. Perception 14(6):691–709. doi: 10.1068/p140691 CrossRefPubMedGoogle Scholar
  3. Ernst MO (2001) Psychophysikalische Untersuchungen zur visuomotorischen Integration beim Menschen: visuelle und haptische Wahrnehmung virtueller und realer Objekte. MVK Medien Verlag Köhler, TübingenGoogle Scholar
  4. Fernandez-Ruiz J, Hall-Haro C, Diaz R, Mischner J, Vergara P, Lopez-Garcia J (2000) Learning motor synergies makes use of information on muscular load. Learn Mem 7(4):193–198. doi: 10.1101/lm.7.4.193 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Fernandez-Ruiz J, Diaz R, Moreno-Briseno P, Campos-Romo A, Ojeda R (2006) Rapid topographical plasticity of the visuomotor spatial transformation. J Neurosci 26(7):1986–1990. doi: 10.1523/JNEUROSCI.4023-05.2006 CrossRefPubMedGoogle Scholar
  6. Flook JP, McGonigle BO (1977) Serial adaptation to conflicting prismatic rearrangement effects in monkey and man. Perception 6(1):15–29. doi: 10.1068/p060015 CrossRefPubMedGoogle Scholar
  7. Hay JC, Pick HLJ (1966) Gaze-contingent prism adaptation: optical and motor factors. J Exp Psychol 72(5):640–648. doi: 10.1037/h0023737 CrossRefPubMedGoogle Scholar
  8. Hegele M, Heuer H (2010) Implicit and explicit components of dual adaptation to visuomotor rotations. Conscious Cogn 19(4):906–917. doi: 10.1016/j.concog.2010.05.005 CrossRefPubMedGoogle Scholar
  9. Hinder MR, Woolley DG, Tresilian JR, Riek S, Carson RG (2008) The efficacy of colour cues in facilitating adaptation to opposing visuomotor rotations. Exp Brain Res 191(2):143–155. doi: 10.1007/s00221-008-1513-7 CrossRefPubMedGoogle Scholar
  10. Karniel A, Mussa-Ivaldi F (2002) Does the motor control system use multiple models and context switching to cope with a variable environment? Exp Brain Res 143(4):520–524. doi: 10.1007/s00221-002-1054-4 CrossRefPubMedGoogle Scholar
  11. Körding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427(6971):244–247. doi: 10.1038/nature02169 CrossRefPubMedGoogle Scholar
  12. Kravitz JH (1972) Conditioned adaptation to prismatic displacement. Percept Psychophys 11(1A):38–42. doi: 10.3758/BF03212680 CrossRefGoogle Scholar
  13. Kravitz JH, Yaffe FL (1972) Conditioned adaptation to prismatic displacement with a tone as the conditional stimulus. Percept Psychophys 12(3):305–308. doi: 10.3758/BF03207210 CrossRefGoogle Scholar
  14. Kravitz JH, Yaffe FL (1974) Conditioned adaptation to prismatic displacement: training trials and decay. J Exp Psychol 102(2):194–198. doi: 10.1037/h0035863 CrossRefPubMedGoogle Scholar
  15. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT (1996) Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain 119(4):1199–1211. doi: 10.1093/brain/119.4.1199 CrossRefPubMedGoogle Scholar
  16. McGonigle BO, Flook J (1978) Long-term retention of single and multistate prismatic adaptation by humans. Nature 272(5651):364–366. doi: 10.1038/272364a0 CrossRefPubMedGoogle Scholar
  17. Pick HLJ, Hay JC, Martin R (1969) Adaptation to split-field wedge prism spectacles. J Exp Psychol 80(1):125–132. doi: 10.1037/h0027111 CrossRefPubMedGoogle Scholar
  18. Redding GM, Wallace B (2003) Dual prism adaptation: calibration or alignment? J Mot Behav 35(4):399–408CrossRefPubMedGoogle Scholar
  19. Schot WD, Brenner E, Sousa R, Smeets JBJ (2012) Are people adapted to their own glasses? Perception 41(8):991–993. doi: 10.1068/p7261 CrossRefPubMedGoogle Scholar
  20. Seidler RD, Bloomberg JJ, Stelmach GE (2001) Context-dependent arm pointing adaptation. Behav Brain Res 119(2):155–166. doi: 10.1016/S0166-4328(00)00347-8 CrossRefPubMedGoogle Scholar
  21. Smeets JBJ, van den Dobbelsteen JJ, de Grave DDJ, van Beers RJ, Brenner E (2006) Sensory integration does not lead to sensory calibration. Proc Natl Acad Sci USA 103(49):18,781–18,786. doi: 10.1073/pnas.0607687103 CrossRefGoogle Scholar
  22. Smith MA, Ghazizadeh A, Shadmehr R (2006) Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biol 4(6):1035–1043. doi: 10.1371/journal.pbio.0040179 CrossRefGoogle Scholar
  23. van Dam LCJ, Ernst MO (2015) Mapping shape to visuomotor mapping: learning and generalisation of sensorimotor behaviour based on contextual information. PLoS Comput Biol. doi: 10.1371/journal.pcbi.1004172 PubMedCentralPubMedGoogle Scholar
  24. van Dam LCJ, Hawellek DJ, Ernst MO (2013) Switching between visuomotor mappings: learning absolute mappings or relative shifts. J Vis. doi: 10.1167/13.2.26 PubMedGoogle Scholar
  25. Welch RB (1971) Discriminative conditioning of prism adaptation. Percept Psychophys 10(2):90–92. doi: 10.3758/BF03214321 CrossRefGoogle Scholar
  26. Welch RB, Bridgeman B, Anand S, Browman KE (1993) Alternating prism exposure causes dual adaptation and generalization to a novel displacement. Percept Psychophys 54(2):195–204. doi: 10.3758/BF03211756 CrossRefPubMedGoogle Scholar
  27. Woolley DG, Tresilian JR, Carson RG, Riek S (2007) Dual adaptation to two opposing visuomotor rotations when each is associated with different regions of workspace. Exp Brain Res 179(2):155–165. doi: 10.1007/s00221-006-0778-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Cognitive NeuroscienceUniversität BielefeldBielefeldGermany
  2. 2.Cognitive Interaction Technology (CITEC) Center of ExcellenceUniversität BielefeldBielefeldGermany
  3. 3.Bernstein Center for Computational NeuroscienceTübingenGermany

Personalised recommendations