Experimental Brain Research

, Volume 234, Issue 6, pp 1363–1375 | Cite as

Influence of temporal pressure constraint on the biomechanical organization of gait initiation made with or without an obstacle to clear

  • Eric YiouEmail author
  • Paul Fourcade
  • Romain Artico
  • Teddy Caderby
Research Article


Many daily motor tasks have to be performed under a temporal pressure constraint. This study aimed to explore the influence of such constraint on motor performance and postural stability during gait initiation. Young healthy participants initiated gait at maximal velocity under two conditions of temporal pressure: in the low-pressure condition, gait was self-initiated (self-initiated condition, SI); in the high-pressure condition, it was initiated as soon as possible after an acoustic signal (reaction-time condition, RT). Gait was initiated with and without an environmental constraint in the form of an obstacle to be cleared placed in front of participants. Results showed that the duration of postural adjustments preceding swing heel-off (“anticipatory postural adjustments”, APAs) was shorter, while their amplitude was larger in RT compared to SI. These larger APAs allowed the participants to reach equivalent postural stability and motor performance in both RT and SI. In addition, the duration of the execution phase of gait initiation increased greatly in the condition with an obstacle to be cleared (OBST) compared to the condition without an obstacle (NO OBST), thereby increasing lateral instability and thus involving larger mediolateral APA. Similar effects of temporal pressure were obtained in NO OBST and OBST. This study shows the adaptability of the postural system to temporal pressure in healthy young adults initiating gait. The outcome of this study may provide a basis for better understanding the aetiology of balance impairments with the risk of falling in frail populations while performing daily complex tasks involving a whole-body progression.


Postural stability Motor performance Temporal pressure Anticipatory postural adjustments Gait initiation 


Conflict of interest

None of the authors have financial or other conflicts interest in regard to this research.


  1. Azuma T, Ito T, Yamashita N (2007) Effects of changing the initial horizontal location of the center of mass on the anticipatory postural adjustments and task performance associated with step initiation. Gait Posture 26:526–531. doi: 10.1016/j.gaitpost.2006.11.203 CrossRefPubMedGoogle Scholar
  2. Bouisset S, Do MC (2008) Posture, dynamic stability, and voluntary movement. Neurophysiol Clin 38:345–362. doi: 10.1016/j.neucli.2008.10.001 CrossRefPubMedGoogle Scholar
  3. Brenière Y, Do MC (1991) Control of gait initiation. J Mot Behav 23:235–240. doi: 10.1080/00222895.1991.9942034 CrossRefPubMedGoogle Scholar
  4. Brenière Y, Do MC, Bouisset S (1987) Are dynamic phenomena prior to stepping essential to walking. J Mot Behav 19:62–76. doi: 10.1080/00222895.1987.10735400 CrossRefPubMedGoogle Scholar
  5. Brunt D, Lafferty MJ, McKeon A, Goode B, Mulhausen C, Polk P (1991) Invariant characteristics of gait initiation. Am J Phys Med Rehabil 70:206–212. doi: 10.1097/00002060-199108000-00009 CrossRefPubMedGoogle Scholar
  6. Brunt D, Liu S-M, Trimble M, Bauer J, Short M (1999) Principles underlying the organization of movement initiation from quiet stance. Gait Posture 10:121–128. doi: 10.1016/S0966-6362(99)00020-X CrossRefPubMedGoogle Scholar
  7. Brunt D, Santos V, Kim HD, Light K, Levy C (2005) Initiation of movement from quiet stance: comparison of gait and stepping in elderly subjects of different levels of functional ability. Gait Posture 21:297–302. doi: 10.1016/j.gaitpost.2004.03.003 CrossRefPubMedGoogle Scholar
  8. Caderby T, Dalleau G, Leroyer P, Bonazzi B, Chane-Teng D, Do MC (2013) Does an additional load modify the anticipatory postural adjustments in gait initiation? Gait Posture 37:144–146. doi: 10.1016/j.gaitpost.2012.06.012 CrossRefPubMedGoogle Scholar
  9. Caderby T, Yiou E, Peyrot N, Begon M, Dalleau G (2014) Influence of gait speed on the control of mediolateral dynamic stability during gait initiation. J Biomech 47:417–423. doi: 10.1016/j.jbiomech.2013.11.011 CrossRefPubMedGoogle Scholar
  10. Crenna P, Frigo C (1991) A motor programme for the initiation of forward-oriented movements in humans. J Physiol 437:635–653CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dalton E, Bishop M, Tillman MD, Hass CJ (2011) Simple change in initial standing position enhances the initiation of gait. Med Sci Sports Exerc 43:2352–2358. doi: 10.1249/MSS.0b013e318222bc82 CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Wolf S, Slijper H, Latash ML (1998) Anticipatory postural adjustments during self-paced and reaction-time movements. Exp Brain Res 121:7–19. doi: 10.1007/s002210050431 CrossRefPubMedGoogle Scholar
  13. Delval A, Krystkowiak P, Blatt JL, Labyt E, Destee A, Derambure P, Defebvre L (2005) Caracterisation des ajustements posturaux lors d’une initiation de la marche declenchee par un stimulus sonore et autocommandee chez 20 sujets sains. Neurophysiologie Clinique/Clinical Neurophysiology 35:180. doi: 10.1016/j.neucli.2006.01.002 CrossRefPubMedGoogle Scholar
  14. Dibble LE, Nicholson DE, Shultz B, MacWilliams BA, Marcus RL, Moncur C (2004) Sensory cueing effects on maximal speed gait initiation in persons with Parkinson’s disease and healthy elders. Gait Posture 19:215–225. doi: 10.1016/S0966-6362(03)00065-1 CrossRefPubMedGoogle Scholar
  15. Elble RJ, Moody C, Leffler K, Sinha R (1994) The initiation of normal walking. Mov Disord 9:139–146. doi: 10.1002/mds.870090203 CrossRefPubMedGoogle Scholar
  16. Hof AL, Gazendam MG, Sinke WE (2005) The condition for dynamic stability. J Biomech 38:1–8. doi: 10.1016/j.jbiomech.2004.03.025 CrossRefPubMedGoogle Scholar
  17. Hussein T, Yiou E, Larue J (2013) Age-related differences in motor coordination during simultaneous leg flexion and finger extension: influence of temporal pressure. PLoS ONE 8:e83064. doi: 10.1371/journal.pone.0083064 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ilmane N, LaRue J (2008) Modulation of anticipatory postural adjustments in a complex task under different temporal constraints. Mot Control 12:330–347Google Scholar
  19. Ito T, Azuma T, Yamashita N (2003) Anticipatory control in the initiation of a single step under biomechanical constraints in humans. Neurosci Lett 352:207–210. doi: 10.1016/j.neulet.2003.09.002 CrossRefPubMedGoogle Scholar
  20. Jacobs JV, Lou JS, Kraakevik JA, Horak FB (2009) The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience 164:877–885. doi: 10.1016/j.neuroscience.2009.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jian Y, Winter DA, Ishac MG, Gilchrist L (1993) Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1:9–22. doi: 10.1016/0966-6362(93)90038-3 CrossRefGoogle Scholar
  22. Kannus P, Leiponen P, Parkkari J, Palvanen M, Jarvinen M (2006) A sideways fall and hip fracture. Bone 39:383–384. doi: 10.1016/j.bone.2006.01.148 CrossRefPubMedGoogle Scholar
  23. Kim HD, Brunt D (2009) The effect of a sensory perturbation on step direction or length while crossing an obstacle from quiet stance. Gait Posture 30:1–4. doi: 10.1016/j.gaitpost.2009.02.016 CrossRefPubMedGoogle Scholar
  24. Lepers R, Brenière Y (1995) The role of anticipatory postural adjustments and gravity in gait initiation. Exp Brain Res 107:118–124. doi: 10.1007/BF00228023 CrossRefPubMedGoogle Scholar
  25. Lyon IN, Day BL (1997) Control of frontal plane body motion in human stepping. Exp Brain Res 115:345–356. doi: 10.1007/PL00005703 CrossRefPubMedGoogle Scholar
  26. Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc 45:313–320CrossRefPubMedGoogle Scholar
  27. McIlroy WE, Maki BE (1999) The control of lateral stability during rapid stepping reactions evoked by antero-posterior perturbation: does anticipatory control play a role? Gait Posture 9:190–198. doi: 10.1016/S0966-6362(99)00013-2 CrossRefPubMedGoogle Scholar
  28. Michel V, Do MC (2002) Are stance ankle plantar flexor muscles necessary to generate propulsive force during human gait initiation? Neurosci Lett 325:139–143. doi: 10.1016/S0304-3940(02)00255-0 CrossRefPubMedGoogle Scholar
  29. Mickelborough J, van der Linden ML, Richards J, Ennos AR (2000) Validity and reliability of a kinematic protocol for determining foot contact events. Gait Posture 11:32–37. doi: 10.1016/S0966-6362(99)00050-8 CrossRefPubMedGoogle Scholar
  30. Mille M-L, Mouchnino L (1998) Are human anticipatory postural adjustments affected by a modification of the initial position of the center of gravity? Neurosci Lett 242:61–64. doi: 10.1016/S0304-3940(98)00047-0 CrossRefPubMedGoogle Scholar
  31. Nougier V, Teasdale N, Bard C, Fleury M (1999) Modulation of anticipatory postural adjustments in a reactive and a self-triggered mode in humans. Neurosci Lett 260:109–112. doi: 10.1016/S0304-3940(98)00961-6 CrossRefPubMedGoogle Scholar
  32. Robinovitch SN, Feldman F, Yang Y et al (2013) Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet 381:47–54. doi: 10.1016/S0140-6736(12)61263-X CrossRefPubMedPubMedCentralGoogle Scholar
  33. Smeesters C, Hayes WC, McMahon TA (2001) Disturbance type and gait speed affect fall direction and impact location. J Biomech 34:309–317. doi: 10.1016/S0021-9290(00)00200-1 CrossRefPubMedGoogle Scholar
  34. Wang Y, Zatsiorsky VM, Latash ML (2006) Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions. Clin Neurophysiol 117:41–56. doi: 10.1016/j.clinph.2005.09.002 CrossRefPubMedGoogle Scholar
  35. Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New YorkGoogle Scholar
  36. Yiou E, Hamaoui A, Le Bozec S (2007) Influence of base of support size on arm pointing performance and associated anticipatory postural adjustments. Neurosci Lett 423:29–34. doi: 10.1016/j.neulet.2007.06.034 CrossRefPubMedGoogle Scholar
  37. Yiou E, Deroche T, Do MC, Woodman T (2011a) Influence of fear of falling on anticipatory postural control of medio-lateral stability during rapid leg flexion. Eur J Appl Physiol 111:611–620. doi: 10.1007/s00421-010-1680-7 CrossRefPubMedGoogle Scholar
  38. Yiou E, Ditcharles S, Le Bozec S (2011b) Biomechanical reorganisation of stepping initiation during acute dorsiflexor fatigue. J Electromyogr Kinesiol 21:727–733. doi: 10.1016/j.jelekin.2011.04.008 CrossRefPubMedGoogle Scholar
  39. Yiou E, Caderby T, Hussein T (2012a) Adaptability of anticipatory postural adjustments associated with voluntary movement. World J Orthop 3:75–86. doi: 10.5312/wjo.v3.i6.75 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yiou E, Hussein T, Larue J (2012b) Influence of temporal pressure on anticipatory postural control of medio-lateral stability during rapid leg flexion. Gait Posture 35:494–499. doi: 10.1016/j.gaitpost.2011.11.015 CrossRefPubMedGoogle Scholar
  41. Yiou E, Hussein T, LaRue J (2014) Influence of ankle loading on the relationship between temporal pressure and motor coordination during a whole-body paired task. Exp Brain Res. doi: 10.1007/s00221-014-4003-0 PubMedGoogle Scholar
  42. Zettel JL, McIlroy WE, Maki BE (2002a) Can stabilizing features of rapid triggered stepping reactions be modulated to meet environmental constraints? Exp Brain Res 145:297–308. doi: 10.1007/s00221-002-1083-z CrossRefPubMedGoogle Scholar
  43. Zettel JL, McIlroy WE, Maki BE (2002b) Environmental constraints on foot trajectory reveal the capacity for modulation of anticipatory postural adjustments during rapid triggered stepping reactions. Exp Brain Res 146:38–47. doi: 10.1007/s00221-002-1150-5 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Eric Yiou
    • 1
    Email author
  • Paul Fourcade
    • 1
  • Romain Artico
    • 1
  • Teddy Caderby
    • 2
  1. 1.CIAMS Laboratory, EA 4532, UFR STAPSUniversity of Paris-SudOrsayFrance
  2. 2.DIMPS Laboratory, EA 4075, UFR STAPSUniversity of La RéunionSaint-DenisFrance

Personalised recommendations