Experimental Brain Research

, Volume 233, Issue 7, pp 2053–2060 | Cite as

Coordination of digit force variability during dominant and non-dominant sustained precision pinch

  • Ke Li
  • Na Wei
  • Shouwei Yue
  • Dominic Thewlis
  • Francois Fraysse
  • Maarten Immink
  • Roger Eston
Research Article


This study examined the effects of handedness on the inter-digit coordination of force variability with and without concurrent visual feedback during sustained precision pinch. Twenty-four right-handed subjects were instructed to pinch an instrumented apparatus with their dominant and non-dominant hands, separately. During the pinch, the subjects were required to maintain a stable force output at 5 N for 1 min. Visual feedback was given for the first 30 s and removed for the second 30 s. Coefficient of variation and detrended fluctuation analysis were employed to examine the amount and structural variability of the thumb and index finger forces. Similarly, correlation coefficient and detrended cross-correlation analysis were applied to quantify the inter-digit correlation of force amount and structural variability. Results showed that, compared to the non-dominant hand, the dominant hand had higher inter-digit difference in the amount of digit force variability. Without visual feedback, the dominant hand exhibited lower digit force structural variability but higher inter-digit force structural correlation than the non-dominant hand. These results implied that the dominant hand would be more independent, less flexible and with lower dynamic degrees of freedom than the non-dominant hand in coordination of the thumb and index finger forces during sustained precision pinch. The effects of handedness on inter-digit force coordination were dependent on sensory condition, which shed light on higher-level sensorimotor mechanisms that may be responsible for the asymmetries in coordination of digit force variability.


Handedness Motor control Pinch Sensorimotor integration Force variability 


  1. Adam A, De Luca CJ, Erim Z (1998) Hand dominance and motor unit firing behavior. J Neurophysiol 80:1373–1382PubMedGoogle Scholar
  2. Adamo DE, Taufiq A (2011) Establishing hand preference: Why does it matter? Hand (N Y) 6:295–303. doi:10.1007/s11552-011-9324-x CrossRefGoogle Scholar
  3. Aimonetti JM, Morin D, Schmied A, Vedel JP, Pagni S (1999) Proprioceptive control of wrist extensor motor units in humans: dependence on handedness. Somatosens Mot Res 16:11–29PubMedCrossRefGoogle Scholar
  4. Boulinguez P, Nougier V, Velay JL (2001) Manual asymmetries in reaching movement control. I: study of right-handers. Cortex: J Devoted Study Nerv Syst Behav 37:101–122CrossRefGoogle Scholar
  5. Bradshaw JL, Nettleton NC, Taylor MJ (1981) The use of laterally presented words in research into cerebral asymmetry: is directional scanning likely to be a source of artifact? Brain Lang 14:1–14PubMedCrossRefGoogle Scholar
  6. Deutsch KM, Newell KM (2002) Children’s coordination of force output in a pinch grip task. Dev Psychobiol 41:253–264. doi:10.1002/dev.10051 PubMedCrossRefGoogle Scholar
  7. Deutsch KM, Newell KM (2003) Deterministic and stochastic processes in children’s isometric force variability. Dev Psychobiol 43:335–345PubMedCrossRefGoogle Scholar
  8. Dun S, Kaufmann RA, Li ZM (2007) Lower median nerve block impairs precision grip. J Electromyogr Kinesiol 17:348–354. doi:10.1016/j.jelekin.2006.02.002 PubMedCrossRefGoogle Scholar
  9. Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70:2470–2488PubMedGoogle Scholar
  10. Fugl-Meyer AR, Eriksson A, Sjostrom M, Soderstrom G (1982) Is muscle structure influenced by genetical or functional factors? A study of three forearm muscles. Acta Physiol Scand 114:277–281. doi:10.1111/j.1748-1716.1982.tb06983.x PubMedCrossRefGoogle Scholar
  11. Goble DJ, Brown SH (2008) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610. doi:10.1016/j.neubiorev.2007.10.006 PubMedCrossRefGoogle Scholar
  12. Goble DJ, Lewis CA, Brown SH (2006) Upper limb asymmetries in the utilization of proprioceptive feedback. Exp Brain Res 168:307–311. doi:10.1007/s00221-005-0280-y PubMedCrossRefGoogle Scholar
  13. Goodale MA (1988) Hemispheric differences in motor control. Behav Brain Res 30:203–214PubMedCrossRefGoogle Scholar
  14. Hammond G (2002) Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci Biobehav Rev 26:285–292PubMedCrossRefGoogle Scholar
  15. Honda H (1982) Rightward superiority of eye movements in a bimanual aiming task. Q J Exp Psychol A Human Exp Psychol 34:499–513CrossRefGoogle Scholar
  16. Honda H (1984) Functional between-hand differences and outflow eye position information. Q J Exp Psychol A Human Exp Psychol 36:75–88CrossRefGoogle Scholar
  17. Hoshiyama M, Kakigi R (1999) Changes of somatosensory evoked potentials during writing with the dominant and non-dominant hands. Brain Res 833:10–19PubMedCrossRefGoogle Scholar
  18. Kimura D (1982) Left-hemisphere control of oral and brachial movements and their relation to communication. Philos Trans R Soc Lond B Biol Sci 298:135–149PubMedCrossRefGoogle Scholar
  19. Li K, Li ZM (2013) Cross recurrence quantification analysis of precision grip following peripheral median nerve block. J Neuroeng Rehabil 10:28. doi:10.1186/1743-0003-10-28 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Li K, Marquardt TL, Li ZM (2013a) Removal of visual feedback lowers structural variability of inter-digit force coordination during sustained precision pinch. Neurosci Lett 545:1–5. doi:10.1016/j.neulet.2013.04.011 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Li K, Nataraj R, Marquardt TL, Li ZM (2013b) Directional coordination of thumb and finger forces during precision pinch. PLoS ONE 8:e79400. doi:10.1371/journal.pone.0079400 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Li K, Evans PJ, Seitz WH Jr, Li ZM (2015) Carpal tunnel syndrome impairs sustained precision pinch performance. Clin Neurophysiol 126:194–201. doi:10.1016/j.clinph.2014.05.004 PubMedCrossRefGoogle Scholar
  23. Lindsay TR, Noakes TD, McGregor SJ (2014) Effect of treadmill versus overground running on the structure of variability of stride timing. Percept Mot Skills 118:331–346. doi:10.2466/30.26.PMS.118k18w8 PubMedCrossRefGoogle Scholar
  24. Mieschke PE, Elliott D, Helsen WF, Carson RG, Coull JA (2001) Manual asymmetries in the preparation and control of goal-directed movements. Brain Cogn 45:129–140. doi:10.1006/brcg.2000.1262 PubMedCrossRefGoogle Scholar
  25. Moritz CT, Barry BK, Pascoe MA, Enoka RM (2005) Discharge rate variability influences the variation in force fluctuations across the working range of a hand muscle. J Neurophysiol 93:2449–2459. doi:10.1152/jn.01122.2004 PubMedCrossRefGoogle Scholar
  26. Newell KM, Broderick MP, Deutsch KM, Slifkin AB (2003) Task goals and change in dynamical degrees of freedom with motor learning. J Exp Psychol Hum Percept Perform 29:379–387PubMedCrossRefGoogle Scholar
  27. Ofori E, Samson JM, Sosnoff JJ (2010) Age-related differences in force variability and visual display. Exp Brain Res 203:299–306. doi:10.1007/s00221-010-2229-z PubMedCrossRefGoogle Scholar
  28. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  29. Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5:82–87. doi:10.1063/1.166141 PubMedCrossRefGoogle Scholar
  30. Podobnik B, Stanley HE (2008) Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys Rev Lett 100:084102PubMedCrossRefGoogle Scholar
  31. Reilly KT, Hammond GR (2000) Independence of force production by digits of the human hand. Neurosci Lett 290:53–56PubMedCrossRefGoogle Scholar
  32. Reilly KT, Hammond GR (2004) Human handedness: is there a difference in the independence of the digits on the preferred and non-preferred hands? Exp Brain Res 156:255–262. doi:10.1007/s00221-003-1783-z PubMedCrossRefGoogle Scholar
  33. Reilly KT, Hammond GR (2006) Intrinsic hand muscles and digit independence on the preferred and non-preferred hands of humans. Exp Brain Res 173:564–571. doi:10.1007/s00221-006-0397-7 PubMedCrossRefGoogle Scholar
  34. Schmied A, Vedel JP, Pagni S (1994) Human spinal lateralization assessed from motoneurone synchronization: dependence on handedness and motor unit type. The Journal of physiology 480(Pt 2):369–387PubMedCentralPubMedCrossRefGoogle Scholar
  35. Semmler JG, Nordstrom MA (1995) Influence of handedness on motor unit discharge properties and force tremor. Exp Brain Res 104:115–125PubMedCrossRefGoogle Scholar
  36. Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285. doi:10.1007/s00221-002-1081-1 PubMedCrossRefGoogle Scholar
  37. Vaillancourt DE, Slifkin AB, Newell KM (2001) Regularity of force tremor in Parkinson’s disease. Clin Neurophysiol 112:1594–1603PubMedCrossRefGoogle Scholar
  38. Vaillancourt DE, Slifkin AB, Newell KM (2002) Inter-digit individuation and force variability in the precision grip of young, elderly, and Parkinson’s disease participants. Mot Control 6:113–128Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ke Li
    • 1
  • Na Wei
    • 2
  • Shouwei Yue
    • 3
  • Dominic Thewlis
    • 4
  • Francois Fraysse
    • 4
  • Maarten Immink
    • 4
  • Roger Eston
    • 4
  1. 1.Laboratory of Motor Control and Rehabilitation, Institute of Biomedical Engineering, School of Control Science and EngineeringShandong UniversityJinanChina
  2. 2.Department of Geriatrics, Qilu HospitalShandong UniversityJinanChina
  3. 3.Department of Physical Medicine and Rehabilitation, Qilu HospitalShandong UniversityJinanChina
  4. 4.Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, School of Health SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations