Advertisement

Experimental Brain Research

, Volume 233, Issue 5, pp 1399–1408 | Cite as

Light touch modulates balance recovery following perturbation: from fast response to stance restabilization

  • Alessandra Rezende MartinelliEmail author
  • Daniel Boari Coelho
  • Fernando Henrique Magalhães
  • André Fabio Kohn
  • Luis Augusto Teixeira
Research Article

Abstract

Light fingertip touch of a static bar generates extra somatosensory information used by the postural control system to reduce body sway. While the effect of light touch has been studied in quiet stance, less attention has been given to its potential benefit for reactive postural responses. In the present study, we tested the effect of light fingertip touch of a stable surface on recovery of postural stability from a mechanical perturbation. Participants stood upright on a force plate touching a static rigid bar while being pulled backward by a load. Unpredictable release of the load induced fast anterior body sway, requiring a reactive response to recover balance. Effect of light touch on postural responses was assessed as a function of vision and malleability of the support surface, analyzing different epochs ranging from the pre-perturbation period to recovery of a relatively stable quiet stance. Results showed that light touch induced lower magnitude of muscular activation in all epochs. Center of pressure (CoP) displacement/sway was affected by interaction of light touch with manipulation of the other sensory information. For the periods associated with quiet stance, light touch led to decreased CoP sway in the malleable surface in the pre-perturbation epoch, and in the condition combining no vision and malleable surface in the balance restabilization and follow-up quiet stance epochs. For the fast reactive response epoch, light touch induced smaller amplitude of CoP displacement across conditions, and lower CoP maximum velocity in the condition combining no vision and rigid surface. These results showed that light touch modulates postural responses in all epochs associated with an unanticipated mechanical perturbation, with a more noticeable effect in conditions manipulating sensory information relevant for balance control.

Keywords

Haptic information Somesthetic afference Balance Postural control Postural perturbation 

Notes

Acknowledgments

This study was supported through Grants provided by the Foundation for Research Support of the State of São Paulo, Brazil (FAPESP, ARM #2011/18173-3, FHM #2011/13222-6 and LAT #2013/00639-1), and by the Brazilian Council of Science and Technology (CNPq, AFK #303313/2011-0, and LAT #302628/2013-4).

Conflict of interest

Authors declare to have no actual or potential conflict of interest including financial, personal or other relationships which might influence results and their interpretation.

References

  1. Albertsen IM, Temprado JJ, Berton E (2012) Effect of haptic supplementation provided by a fixed or mobile stick on postural stabilization in elderly people. Gerontology 58:419–429. doi: 10.1159/000337495 CrossRefPubMedGoogle Scholar
  2. Baccini M, Rinaldi LA, Federighi G, Vannucchi L, Paci M, Masotti G (2007) Effectiveness of fingertip light contact in reducing postural sway in older people. Age Ageing 36:30–35. doi: 10.1093/ageing/afl072 CrossRefPubMedGoogle Scholar
  3. Bortolami SB, DiZio P, Rabin E, Lackner JR (2003) Analysis of human postural responses to recoverable falls. Exp Brain Res 151:387–404. doi: 10.1007/s00221-003-1481-x CrossRefPubMedGoogle Scholar
  4. Clapp S, Wing AM (1999) Light touch contribution to balance in normal bipedal stance. Exp Brain Res 125:521–524. doi: 10.1007/s002210050711 CrossRefPubMedGoogle Scholar
  5. de Lima AC, de Azevedo Neto RM, Teixeira LA (2010) On the functional integration between postural and supra-postural tasks on the basis of contextual cues and task constraint. Gait Posture 32:615–618. doi: 10.1016/j.gaitpost.2010.09.003 CrossRefPubMedGoogle Scholar
  6. de Lima-Pardini AC, Papegaaij S, Cohen RG, Teixeira LA, Smith BA, Horak FB (2012) The interaction of postural and voluntary strategies for stability in Parkinson’s disease. J Neurophysiol 108:1244–1252. doi: 10.1152/jn.00118.2012 CrossRefPubMedCentralPubMedGoogle Scholar
  7. de Lima-Pardini AC, Coelho DB, Silva MB, Azzi NM, Martinelli AR, Horak F, Teixeira LA (2014) Aging increases flexibility of postural reactive responses based on constraints imposed by a manual task. Front Aging Neurosci. doi: 10.3389/fnagi.2014.00327 PubMedCentralPubMedGoogle Scholar
  8. Dickstein R, Shupert CL, Horak FB (2001) Fingertip touch improves postural stability in patients with peripheral neuropathy. Gait Posture 14:238–247. doi: 10.1016/S0966-6362(01)00161-8 CrossRefPubMedGoogle Scholar
  9. Dickstein R, Peterka RJ, Horak FB (2003) Effects of light fingertip touch on postural responses in subjects with diabetic neuropathy. J Neurol Neurosurg Psychiatry 74:620–626. doi: 10.1136/jnnp.74.5.620 CrossRefPubMedCentralPubMedGoogle Scholar
  10. Forero J, Misiaszek JE (2013) The contribution of light touch sensory cues to corrective reactions during treadmill locomotion. Exp Brain Res 226:575–584. doi: 10.1007/s00221-013-3470-z CrossRefPubMedGoogle Scholar
  11. Franzen E, Gurfinkel VS, Wright WG, Cordo PJ, Horak FB (2011) Haptic touch reduces sway by increasing axial tone. Neuroscience 174:216–223. doi: 10.1016/j.neuroscience.2010.11.017 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Holden M, Ventura J, Lackner JR (1994) Stabilization of posture by precision contact of the index finger. J Vestib Res 4:285–301PubMedGoogle Scholar
  13. Jeka JJ, Lackner JR (1994) Fingertip contact influences human postural control. Exp Brain Res 100:495–502. doi: 10.1007/BF00229188 CrossRefPubMedGoogle Scholar
  14. Jeka JJ, Lackner JR (1995) The role of haptic cues from rough and slippery surfaces in human postural control. Exp Brain Res 103:267–276. doi: 10.1007/BF00231713 CrossRefPubMedGoogle Scholar
  15. Jeka JJ, Schoner G, Dijkstra T, Ribeiro P, Lackner JR (1997) Coupling of fingertip somatosensory information to head and body sway. Exp Brain Res 113:475–483. doi: 10.1007/PL00005600 CrossRefPubMedGoogle Scholar
  16. Johannsen L, Wing AM, Hatzitaki V (2007) Effects of maintaining touch contact on predictive and reactive balance. J Neurophysiol 97:2686–2695. doi: 10.1152/jn.00038.2007 CrossRefPubMedGoogle Scholar
  17. Kanekar N, Lee YJ, Aruin AS (2013) Effect of light finger touch in balance control of individuals with multiple sclerosis. Gait Posture 38:643–647. doi: 10.1016/j.gaitpost.2013.02.017 CrossRefPubMedGoogle Scholar
  18. Kohn AF (2006) Autocorrelation and cross-correlation methods. In: Akay M (ed) Wiley Encyclopedia of Biomedical Engineering. Wiley, New JerseyGoogle Scholar
  19. Krishnamoorthy V, Slijper H, Latash ML (2002) Effects of different types of light touch on postural sway. Exp Brain Res 147:71–79. doi: 10.1007/s00221-002-1206-6 CrossRefPubMedGoogle Scholar
  20. Lackner JR, Rabin E, DiZio P (2001) Stabilization of posture by precision touch of the index finger with rigid and flexible filaments. Exp Brain Res 139:454–464. doi: 10.1007/s002210100775 CrossRefPubMedGoogle Scholar
  21. Morioka S, Hiyamizu M, Yagi F (2005) The effects of an attentional demand tasks on standing posture control. J Physiol Anthropol Appl Hum Sci 24:215–219. doi: 10.2114/jpa.24.215 CrossRefGoogle Scholar
  22. Prado JM, Stoffregen TA, Duarte M (2007) Postural sway during dual tasks in young and elderly adults. Gerontology 53:274–281. doi: 10.1159/000102938 CrossRefPubMedGoogle Scholar
  23. Riley MA, Balasubramaniam R, Turvey MT (1999) Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78. doi: 10.1016/S0966-6362(98)00044-7 CrossRefPubMedGoogle Scholar
  24. Sozzi S, Do MC, Monti A, Schieppati M (2012) Sensorimotor integration during stance: processing time of active or passive addition or withdrawal of visual or haptic information. Neuroscience 212:59–76. doi: 10.1016/j.neuroscience.2012.03.044 CrossRefPubMedGoogle Scholar
  25. Stoffregen TA, Pagulayan RJ, Bardy BB, Hettinger LJ (2000) Modulating postural control to facilitate visual performance. Hum Mov Sci 19:203–220. doi: 10.1016/S0167-9457(00)00009-9 CrossRefGoogle Scholar
  26. Stoffregen TA, Hove P, Bardy BG, Riley M, Bonnet CT (2007) Postural stabilization of perceptual but not cognitive performance. J Mot Behav 39:126–138. doi: 10.3200/JMBR.39.2.126-138 CrossRefPubMedGoogle Scholar
  27. Vieira OJ, Coelho DB, Teixeira LA (2014) Asymmetric balance control between legs for quiet but not for perturbed stance. Exp Brain Res 232:3269–3276. doi: 10.1007/s00221-014-4018-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alessandra Rezende Martinelli
    • 1
    Email author
  • Daniel Boari Coelho
    • 1
  • Fernando Henrique Magalhães
    • 2
  • André Fabio Kohn
    • 2
  • Luis Augusto Teixeira
    • 1
  1. 1.Human Motor Systems Laboratory, School of Physical Education and SportUniversity of São PauloSão PauloBrazil
  2. 2.Biomedical Engineering Laboratory, Escola PolitecnicaUniversity of São PauloSão PauloBrazil

Personalised recommendations