Experimental Brain Research

, Volume 233, Issue 3, pp 691–699 | Cite as

How does high-frequency sound or vibration activate vestibular receptors?

  • I. S. CurthoysEmail author
  • J. W. Grant


The mechanism by which vestibular neural phase locking occurs and how it relates to classical otolith mechanics is unclear. Here, we put forward the hypothesis that sound and vibration both cause fluid pressure waves in the inner ear and that it is these pressure waves which displace the hair bundles on vestibular receptor hair cells and result in activation of type I receptor hair cells and phase locking of the action potentials in the irregular vestibular afferents, which synapse on type I receptors. This idea has been suggested since the early neural recordings and recent results give it greater credibility.


Otolith Utricular Saccular VEMP Hair cell 



Air-conducted sound


Bone-conducted vibration




The location on the forehead in the midline at the hairline


Bone-conducted vibration delivered to Fz


Hair cell bundle


Cervical vestibular-evoked myogenic potential


Ocular vestibular-evoked myogenic potential


The initial negative potential of the oVEMP response at a latency of around 10 ms



We are grateful for the support of NH&MRC of Australia (Grants 632746, 1046826) and the Garnett Passe and Rodney Williams Memorial Foundation. We thank Ann Burgess for her excellent help.


  1. Burgess AM, Mezey LE, Manzari L, MacDougall HG, McGarvie LA, Curthoys IS (2013) Effect of stimulus rise-time on the ocular vestibular-evoked myogenic potential to bone-conducted vibration. Ear Hear 34:799–805. doi: 10.1097/AUD.0b013e318294e3d2 PubMedCrossRefGoogle Scholar
  2. Carey JP, Hirvonen TP, Hullar TE, Minor LB (2004) Acoustic responses of vestibular afferents in a model of superior canal dehiscence. Otol Neurotol 25:345–352PubMedCrossRefGoogle Scholar
  3. Chien W, Ravicz ME, Rosowski JJ, Merchant SN (2007) Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal. Otol Neurotol 28:250–257. doi: 10.1097/01.mao.0000244370.47320.9a PubMedCentralPubMedCrossRefGoogle Scholar
  4. Curthoys IS (2004) Peripheral vestibular responses to sound. Neuroembryol Aging 3:207–214CrossRefGoogle Scholar
  5. Curthoys IS (2010) A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. Clin Neurophysiol 121:132–144. doi: 10.1016/j.clinph.2009.09.027 PubMedCrossRefGoogle Scholar
  6. Curthoys IS, Vulovic V (2011) Vestibular primary afferent responses to sound and vibration in the guinea pig. Exp Brain Res 210:347–352. doi: 10.1007/s00221-010-2499-5 PubMedCrossRefGoogle Scholar
  7. Curthoys IS, Kim J, McPhedran SK, Camp AJ (2006) Bone conducted vibration selectively activates irregular primary otolithic vestibular neurons in the guinea pig. Exp Brain Res 175:256–267. doi: 10.1007/s00221-006-0544-1 PubMedCrossRefGoogle Scholar
  8. Curthoys IS, Uzun-Coruhlu H, Wong CC, Jones AS, Bradshaw AP (2009) The configuration and attachment of the utricular and saccular maculae to the temporal bone. New evidence from microtomography-CT studies of the membranous labyrinth. Ann NY Acad Sci 1164:13–18. doi: 10.1111/j.1749-6632.2008.03729.x PubMedCrossRefGoogle Scholar
  9. Curthoys IS, Vulovic V, Burgess AM, Cornell ED, Mezey LE, Macdougall HG, Manzari L, McGarvie LA (2011) The basis for using bone-conducted vibration or air-conducted sound to test otolithic function. Ann NY Acad Sci 1233:231–241. doi: 10.1111/j.1749-6632.2011.06147.x PubMedCrossRefGoogle Scholar
  10. Curthoys IS, Vulovic V, Sokolic L, Pogson J, Burgess AM (2012) Irregular primary otolith afferents from the guinea pig utricular and saccular maculae respond to both bone conducted vibration and to air conducted sound. Brain Res Bull 89:16–21. doi: 10.1016/j.brainresbull.2012.07.007 PubMedCrossRefGoogle Scholar
  11. Curthoys IS, Vulovic V, Pogson J, Sokolic L (2013) Responses of guinea pig primary vestibular afferents to low frequency (50–100 Hz) bone conducted vibration (BCV)—the neural basis of vibration induced nystagmus. Program No. 574.06, 2012 Neuroscience Meeting Planner. New Orleans, LA: Society for Neuroscience, 2012. OnlineGoogle Scholar
  12. Curthoys I, Burgess A, Mezey L, MacDougall H, McGarvie L (2014a) The effect of stimulus rise-time on the ocular vestibular-evoked myogenic potential (oVEMP) to bone-conducted vibration (BCV). J Vestib Res 24:69–70Google Scholar
  13. Curthoys I, Vulovic V, Sokolic L, Goonetilleke S, Burgess A, Grant W (2014b) The frequency responses of irregular primary utricular afferent neurons to bone-conducted vibration (BCV) and air-conducted sound (ACS). J Vestib Res 24:70–71Google Scholar
  14. Curthoys IS, Burgess AM, McGarvie LA (2014c) What Is the adequate stimulus for the oVEMP n10 to bone-conducted vibration? a reply to the letter by todd and colebatch (2014). Ear Hear 35:487–489PubMedCrossRefGoogle Scholar
  15. Dickman JD, Correia MJ (1989) Responses of pigeon horizontal semicircular canal afferent fibers II. High-frequency mechanical stimulation. J Neurophysiol 62:1102–1112PubMedGoogle Scholar
  16. Dunlap MD, Grant JW (2014) Experimental measurement of utricle system dynamic response to inertial stimulus. J Assoc Res Otolaryngol 15:511–528. doi: 10.1007/s10162-014-0456-x PubMedCrossRefGoogle Scholar
  17. Dunlap MD, Spoon CE, Grant JW (2012) Experimental measurement of utricle dynamic response. J Vestib Res 22:57–68. doi: 10.3233/ves-2011-0431 PubMedGoogle Scholar
  18. Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 34:501–534. doi: 10.1146/annurev-neuro-061010-113710 PubMedCrossRefGoogle Scholar
  19. Fernandez C, Goldberg JM (1976a) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. J Neurophysiol 39:996–1008PubMedGoogle Scholar
  20. Fernandez C, Goldberg JM (1976b) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995PubMedGoogle Scholar
  21. Fernandez C, Goldberg JM (1976c) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39:970–984PubMedGoogle Scholar
  22. Fernandez C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780PubMedGoogle Scholar
  23. Goldberg JM (1991) The vestibular end organs: morphological and physiological diversity of afferents. Curr Opin Neurobiol 1:229–235PubMedCrossRefGoogle Scholar
  24. Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297PubMedCentralPubMedCrossRefGoogle Scholar
  25. Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990a) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790PubMedGoogle Scholar
  26. Goldberg JM, Desmadryl G, Baird RA, Fernandez C (1990b) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804PubMedGoogle Scholar
  27. Hara M, Kimura RS (1993) Morphology of the membrana limitans. Ann Otol Rhinol Laryngol 102:625–630PubMedCrossRefGoogle Scholar
  28. Hecker DJ, Lohscheller J, Schorn B, Koch KP, Schick B, Dlugaiczyk J (2014) Electromotive triggering and single sweep analysis of vestibular evoked myogenic potentials (VEMPs). IEEE Trans Neural Syst Rehabil Eng 22:158–167CrossRefGoogle Scholar
  29. Iwasaki S, McGarvie LA, Halmagyi GM, Burgess AM, Kim J, Colebatch JG, Curthoys IS (2007) Head taps evoke a crossed vestibulo-ocular reflex. Neurology 68:1227–1229. doi: 10.1212/01.wnl.0000259064.80564.21 PubMedCrossRefGoogle Scholar
  30. Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, Macdougall HG, Halmagyi GM, Curthoys IS (2008a) Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol 119:2135–2147. doi: 10.1016/j.clinph.2008.05.028 PubMedCrossRefGoogle Scholar
  31. Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, Macdougall HG, Halmagyi GM, Curthoys IS (2008b) Ocular vestibular evoked myogenic potentials in response to bone-conducted vibration of the midline forehead at Fz. A new indicator of unilateral otolithic loss. Audiol Neurotol 13:396–404. doi: 10.1159/000148203 CrossRefGoogle Scholar
  32. Li GL, Cho S, von Gersdorff H (2014) Phase-locking precision is enhanced by multiquantal release at an auditory hair cell ribbon synapse. Neuron 83:1404–1417. doi: 10.1016/j.neuron.2014.08.027 PubMedCrossRefGoogle Scholar
  33. Lu Z, Xu Z, Buchser WJ (2004) Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A 190:923–938. doi: 10.1007/s00359-004-0550-3 Google Scholar
  34. Lysakowski A, Minor LB, Fernandez C, Goldberg JM (1995) Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel-monkey. J Neurophysiol 73:1270–1281PubMedGoogle Scholar
  35. Manzari L, Burgess AM, Curthoys IS (2011) Effect of bone conducted vibration of the midline forehead (Fz) in unilateral vestibular loss (uVL)—evidence for a new indicator of unilateral otolithic function. Eur J Neurol 18(Suppl 2):152Google Scholar
  36. Manzari L, Burgess AM, McGarvie LA, Curthoys IS (2013) An indicator of probable semicircular canal dehiscence: ocular vestibular evoked myogenic potentials to high frequencies. Otolaryngol Head Neck Surg 149:142–145. doi: 10.1177/0194599813489494 PubMedCrossRefGoogle Scholar
  37. McCue MP, Guinan JJ Jr (1994) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070PubMedGoogle Scholar
  38. McCue MP, Guinan JJ Jr (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572PubMedGoogle Scholar
  39. McCue MP, Guinan JJ Jr (1997) Sound-evoked activity in primary afferent neurons of a mammalian vestibular system. Am J Otol 18:355–360PubMedGoogle Scholar
  40. Meyer M, Fay RR, Popper AN (2010) Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens. J Exp Biol 213:1567–1578. doi: 10.1242/jeb.031757 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Mikaelian D (1964) Vestibular response to sound: single unit recording from the vestibular nerve in fenestrated deaf mice (Df/Df). Acta Otolaryngol 58:409–422PubMedCrossRefGoogle Scholar
  42. Murofushi T, Curthoys IS (1997) Physiological and anatomical study of click-sensitive primary vestibular afferents in the guinea pig. Acta Otolaryngol 117:66–72PubMedCrossRefGoogle Scholar
  43. Murofushi T, Curthoys IS, Topple AN, Colebatch JG, Halmagyi GM (1995) Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res 103:174–178PubMedCrossRefGoogle Scholar
  44. Nageris BI, Attias J, Shemesh R, Hod R, Preis M (2012) Effect of cochlear window fixation on air- and bone-conduction thresholds. Otol Neurotol 33:1679–1684. doi: 10.1097/MAO.0b013e31826dbabb PubMedCrossRefGoogle Scholar
  45. Nam JH, Cotton JR, Grant JW (2005) Effect of fluid forcing on vestibular hair bundles. J Vestib Res 15:263–278PubMedGoogle Scholar
  46. Rabbitt RD, Boyle R, Highstein SM (1995) Mechanical indentation of the vestibular labyrinth and its relationship to head rotation in the toadfish, Opsanus tau. J Neurophysiol 73:2237–2260PubMedGoogle Scholar
  47. Rabbitt RD, Damiano ER, Grant JW (2004) Biomechanics of the semicircular canals and otolith organs. In: Highstein SM, Fay RR, Popper AN (eds) The vestibular system. Springer, New york, pp 153–201Google Scholar
  48. Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793PubMedGoogle Scholar
  49. Rosengren SM, McAngus Todd NP, Colebatch JG (2005) Vestibular-evoked extraocular potentials produced by stimulation with bone-conducted sound. Clin Neurophysiol 116:1938–1948. doi: 10.1016/j.clinph.2005.03.019 PubMedCrossRefGoogle Scholar
  50. Rosowski JJ, Songer JE, Nakajima HH, Brinsko KM, Merchant SN (2004) Clinical, experimental, and theoretical investigations of the effect of superior semicircular canal dehiscence on hearing mechanisms. Otol Neurotol 25:323–332. doi: 10.1097/00129492-200405000-00021 PubMedCrossRefGoogle Scholar
  51. Rowe MH, Peterson EH (2006) Autocorrelation analysis of hair bundle structure in the utricle. J Neurophysiol 96:2653–2669. doi: 10.1152/jn.00565.2006 PubMedCrossRefGoogle Scholar
  52. Songer JE, Eatock RA (2013) Tuning and timing in mammalian type I hair cells and calyceal synapses. J Neurosci 33:3706–3724. doi: 10.1523/JNEUROSCI.4067-12.2013 PubMedCrossRefGoogle Scholar
  53. Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62. doi: 10.1016/j.heares.2005.07.003 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Songer JE, Rosowski JJ (2006) The effect of superior-canal opening on middle-ear input admittance and air-conducted stapes velocity in chinchilla. J Acoust Soc Am 120:258–269. doi: 10.1121/1.2204356 PubMedCentralPubMedCrossRefGoogle Scholar
  55. Spoon C, Grant W (2011) Biomechanics of hair cell kinocilia: experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler–Bernoulli and Timoshenko beam analysis. J Exp Biol 214:862–870. doi: 10.1242/jeb.051151 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Suzuki JI, Tokumasu K, Goto K (1969) Eye movements from single utricular nerve stimulation in the cat. Acta Otolaryngol 68:350–362PubMedCrossRefGoogle Scholar
  57. Todd NPM, Rosengren SM, Aw ST, Colebatch JG (2007) Ocular vestibular evoked myogenic potentials (OVEMPs) produced by air- and bone-conducted sound. Clin Neurophysiol 118:381–390. doi: 10.1016/j.clinph.2006.09.025 PubMedCrossRefGoogle Scholar
  58. Uzun-Coruhlu H, Curthoys IS, Jones AS (2007) Attachment of the utricular and saccular maculae to the temporal bone. Hear Res 233:77–85. doi: 10.1016/j.heares.2007.07.008 PubMedCrossRefGoogle Scholar
  59. Weber KP, Rosengren SM, Michels R, Sturm V, Straumann D, Landau K (2012) Single motor unit activity in human extraocular muscles during the vestibulo-ocular reflex. J Physiol (Lond) 590:3091–3101. doi: 10.1113/jphysiol.2011.226225 CrossRefGoogle Scholar
  60. Wit HP, Bleeker JD, Mulder HH (1984) Responses of pigeon vestibular nerve-fibers to sound and vibration with audiofrequencies. J Acoust Soc Am 75:202–208. doi: 10.1121/1.390396 PubMedCrossRefGoogle Scholar
  61. Xue JB, Peterson EH (2006) Hair bundle heights in the utricle: differences between macular locations and hair cell types. J Neurophysiol 95:171–186. doi: 10.1152/jn.00800.2005 PubMedCrossRefGoogle Scholar
  62. Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol 84:352–360PubMedCrossRefGoogle Scholar
  63. Zar JH (2010) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar
  64. Zhu H, Tang X, Wei W, Mustain W, Xu Y, Zhou W (2011) Click-evoked responses in vestibular afferents in rats. J Neurophysiol 106:754–763. doi: 10.1152/jn.00003.2011 PubMedCrossRefGoogle Scholar
  65. Zhu H, Tang X, Wei W, Maklad A, Mustain W, Rabbitt R, Highstein S, Allison J, Zhou W (2014) Input-output functions of vestibular afferent responses to air-conducted clicks in rats. J Assoc Res Otolaryngol 15:73–86PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Vestibular Research Laboratory, School of Psychology A 18University of SydneySydneyAustralia
  2. 2.Department of Biomedical Engineering and MechanicsVirginia TechBlacksburgUSA

Personalised recommendations