Skip to main content
Log in

Illusory movements induced by tendon vibration in right- and left-handed people

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Frequency-specific vibratory stimulation of peripheral tendons induces an illusion of limb movement that may be useful for restoring proprioceptive information in people with sensorimotor disability. This potential application may be limited by inter- and intra-subject variability in the susceptibility to such an illusion, which may depend on a variety of factors. To explore the influence of stimulation parameters and participants’ handedness on the movement illusion, we vibrated the right and left tendon of the biceps brachii in a group of right- and left-handed people with five stimulation frequencies (from 40 to 120 Hz in step of 20 Hz). We found that all participants reported the expected illusion of elbow extension, especially after 40 and 60 Hz. Left-handers exhibited less variability in reporting the illusion compared to right-handers across the different stimulation frequencies. Moreover, the stimulation of the non-dominant arm elicited a more vivid illusion with faster onset relative to the stimulation of the dominant arm, an effect that was independent from participants’ handedness. Overall, our data show that stimulation frequency, handedness and arm dominance influence the tendon vibration movement illusion. The results are discussed in reference to their relevance in linking motor awareness, improving current devices for motor ability recovery after brain or spinal damage and developing prosthetics and virtual embodiment systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamo DE, Martin BJ (2009) Position sense asymmetry. Exp Brain Res 192:87–95. doi:10.1007/s00221-008-1560-0

    Article  PubMed  Google Scholar 

  • Adamo DE, Scotland S, Martin BJ (2012) Upper limb kinesthetic asymmetries: gender and handedness effects. Neurosci Lett 516:188–192. doi:10.1016/j.neulet.2012.03.077

    Article  CAS  PubMed  Google Scholar 

  • Begliomini C, Nelini C, Caria A et al (2008) Cortical activations in humans grasp-related areas depend on hand used and handedness. PLoS ONE 3:e3388. doi:10.1371/journal.pone.0003388

    Article  PubMed Central  PubMed  Google Scholar 

  • Botvinick M, Cohen J (1998) Rubber hands’ feel touch that eyes see. Nature 391:1998

    Article  Google Scholar 

  • Calvin-Figuière S, Romaiguère P, Gilhodes JC, Roll JP (1999) Antagonist motor responses correlate with kinesthetic illusions induced by tendon vibration. Exp Brain Res 124:342–350

    Article  PubMed  Google Scholar 

  • Calvin-Figuière S, Romaiguère P, Roll J (2000) Relations between the directions of vibration-induced kinesthetic illusions and the pattern of activation of antagonist muscles. Brain Res 881:128–138

    Article  PubMed  Google Scholar 

  • Cameirão MS, Badia SBI, Duarte E et al (2012) The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke 43:2720–2728. doi:10.1161/STROKEAHA.112.653196

    Article  PubMed  Google Scholar 

  • Carr SJ, Borreggine K, Heilman J et al (2013) Novel magnetomechanical MR compatible vibrational device for producing kinesthetic illusion during fMRI. Med Phys 40:112303. doi:10.1118/1.4824695

    Article  PubMed Central  PubMed  Google Scholar 

  • Carrozzino M, Tecchia F (2005) Lowering the development time of multimodal interactive application: the real-life experience of the XVR project. In: Proceedings of the 2005 ACM SIGCHI international conference on advances in computer entertainment technology, pp 270–273

  • Casini L, Romaiguère P, Ducorps A (2006) Cortical correlates of illusory hand movement perception in humans: a MEG study. Brain Res 1121:200–206. doi:10.1016/j.brainres.2006.08.124

    Article  CAS  PubMed  Google Scholar 

  • Casini L, Roll J-P, Romaiguère P (2008) Relationship between the velocity of illusory hand movement and strength of MEG signals in human primary motor cortex and left angular gyrus. Exp Brain Res 186:349–353. doi:10.1007/s00221-008-1325-9

    Article  PubMed  Google Scholar 

  • Cignetti F, Vaugoyeau M, Nazarian B et al (2014) Boosted activation of right inferior frontoparietal network: A basis for illusory movement awareness. Hum Brain Mapp 00:n/a–n/a. doi:10.1002/hbm.22541

  • David N, Fiori F, Aglioti SM (2013) Susceptibility to the rubber hand illusion does not tell the whole body-awareness story. Cogn Affect Behav Neurosci. doi:10.3758/s13415-013-0190-6

    Google Scholar 

  • Feys P, Helsen WF, Verschueren S et al (2006) Online movement control in multiple sclerosis patients with tremor: effects of tendon vibration. Mov Disord 21:1148–1153. doi:10.1002/mds.20938

    Article  PubMed  Google Scholar 

  • Forner-Cordero A, Steyvers M, Levin O et al (2008) Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav Brain Res 190:41–49. doi:10.1016/j.bbr.2008.02.019

    Article  PubMed  Google Scholar 

  • Fuentes CT, Gomi H, Haggard P (2012) Temporal features of human tendon vibration illusions. Eur J Neurosci 36:3709–3717. doi:10.1111/ejn.12004

    Article  PubMed  Google Scholar 

  • Gay A, Parratte S, Salazard B et al (2007) Proprioceptive feedback enhancement induced by vibratory stimulation in complex regional pain syndrome type I: an open comparative pilot study in 11 patients. Joint Bone Spine 74:461–466. doi:10.1016/j.jbspin.2006.10.010

    Article  PubMed  Google Scholar 

  • Gilhodes JC, Roll JP, Tardy-Gervet MF (1986) Perceptual and motor effects of agonist-antagonist muscle vibration in man. Exp Brain Res 61(2):395–402. doi:10.1007/BF00239528

  • Goble DJ, Brown SH (2008) The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neurosci Biobehav Rev 32:598–610. doi:10.1016/j.neubiorev.2007.10.006

    Article  PubMed  Google Scholar 

  • Goble DJ, Noble BC, Brown SH (2009) Proprioceptive target matching asymmetries in left-handed individuals. Exp Brain Res 197:403–408. doi:10.1007/s00221-009-1922-2

    Article  PubMed  Google Scholar 

  • Goodwin G, McCloskey D, Matthews P (1972) Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science 175:82–84

    Article  Google Scholar 

  • Grill SE, Hallett M (1995) Velocity sensitivity of human muscle spindle afferents and slowly adapting type II cutaneous mechanoreceptors. J Physiol 489(Pt 2):593–602

  • Isaac A, Marks DF, Russell DG (1986) An instrument for assessing imagery of movement: the vividness of movement imagery questionnaire (VMIQ). J Ment Imagery 10:23–30

    Google Scholar 

  • Jones L (1988) Motor illusions: what do they reveal about proprioception? Psychol Bull 103:72–86

    Article  CAS  PubMed  Google Scholar 

  • Keinrath C, Wriessnegger S, Müller-Putz GR, Pfurtscheller G (2006) Post-movement beta synchronization after kinesthetic illusion, active and passive movements. Int J Psychophysiol 62:321–327. doi:10.1016/j.ijpsycho.2006.06.001

    Article  PubMed  Google Scholar 

  • Kim S, Ashe J, Hendrich K, Ellermann J (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261:615–617

    Article  CAS  PubMed  Google Scholar 

  • Kitada R, Naito E, Matsumura M (2002) Perceptual changes in illusory wrist flexion angles resulting from motor imagery of the same wrist movements. Neuroscience 109:701–707

    Article  CAS  PubMed  Google Scholar 

  • Kito T, Hashimoto T, Yoneda T et al (2006) Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration. Brain Res 1114:75–84. doi:10.1016/j.brainres.2006.07.062

    Article  CAS  PubMed  Google Scholar 

  • Lackner JR (1988) Some proprioceptive influences on the perceptual representation of body shape and orientation. Brain 111:281–297. doi:10.1093/brain/111.2.281

    Article  PubMed  Google Scholar 

  • Leonardis D, Frisoli A, Solazzi M, Bergamasco M (2012) Illusory perception of arm movement induced by visuo-proprioceptive sensory stimulation and controlled by motor imagery. In: 2012 IEEE haptics symposium IEEE, pp 421–424

  • McCloskey DI (1973) Differences between the senses of movement and position shown by the effects of loading and vibration of muscles in man. Brain Res 61:119–131

  • McCormick K, Zalucki N, Hudson M, Moseley GL (2007) Faulty proprioceptive information disrupts motor imagery: an experimental study. Aust J Physiother 53:41–45

    Article  PubMed  Google Scholar 

  • Naito E, Ehrsson H (2001) Kinesthetic illusion of wrist movement activates motor-related areas. NeuroReport 12:3805–3809

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Ehrsson HH (2006) Somatic sensation of hand-object interactive movement is associated with activity in the left inferior parietal cortex. J Neurosci 26:3783–3790. doi:10.1523/JNEUROSCI.4835-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Ehrsson H, Geyer S (1999) Illusory arm movements activate cortical motor areas: a positron emission tomography study. J Neurosci 19:6134–6144

    CAS  PubMed  Google Scholar 

  • Naito E, Roland P, Ehrsson H (2002) I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron 36:979–988

    Article  CAS  PubMed  Google Scholar 

  • Naito E, Roland PE, Grefkes C et al (2005) Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol 93:1020–1034. doi:10.1152/jn.00637.2004

    Article  PubMed  Google Scholar 

  • Naito E, Nakashima T, Kito T et al (2007) Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur J Neurosci 25:3476–3487. doi:10.1111/j.1460-9568.2007.05587.x

    Article  PubMed  Google Scholar 

  • Ocklenburg S, Rüther N, Peterburs J et al (2011) Laterality in the rubber hand illusion. Laterality 16:174–187. doi:10.1080/13576500903483515

    PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Porro CA, Francescato MP, Cettolo V et al (1996) Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16:7688–7698

    CAS  PubMed  Google Scholar 

  • Ribot-Ciscar E, Rossi-Durand C, Roll JP (1998) Muscle spindle activity following muscle tendon vibration in man. Neurosci Lett 258:147–150

    Article  CAS  PubMed  Google Scholar 

  • Ribot-Ciscar E, Bergenheim M, Roll J-P (2002) The preferred sensory direction of muscle spindle primary endings influences the velocity coding of two-dimensional limb movements in humans. Exp Brain Res 145:429–436. doi:10.1007/s00221-002-1135-4

    Article  PubMed  Google Scholar 

  • Rinderknecht MD, Santos-Carreras L, Bleuler H, Gassert R (2013) Combined tendon vibration and virtual reality for post-stroke hand rehabilitation. World Haptics Conf 2013:277–282. doi:10.1109/WHC.2013.6548421

    Google Scholar 

  • Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47(2):177–190. doi:10.1007/BF00239377

  • Roll J, Albert F, Thyrion C et al (2009) Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration. J Neurophysiol 101:816–823. doi:10.1152/jn.91075.2008

    Article  PubMed  Google Scholar 

  • Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258. doi:10.1007/s00221-001-0913-8

    Article  PubMed  Google Scholar 

  • Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83(5):2661–2675

  • Schnitzler A, Salenius S, Salmelin R et al (1997) Involvement of primary motor cortex in motor imagery: a neuromagnetic study. Neuroimage 6:201–208. doi:10.1006/nimg.1997.0286

    Article  CAS  PubMed  Google Scholar 

  • Seizova-Cajic T, Azzi R (2010) A visual distracter task during adaptation reduces the proprioceptive movement aftereffect. Exp Brain Res 203:213–219. doi:10.1007/s00221-010-2204-8

    Article  PubMed  Google Scholar 

  • Seizova-Cajic T, Azzi R (2011) Conflict with vision diminishes proprioceptive adaptation to muscle vibration. Exp Brain Res 211:169–175. doi:10.1007/s00221-011-2663-6

    Article  PubMed  Google Scholar 

  • Seizova-Cajic T, Smith JL, Taylor JL, Gandevia SC (2007) Proprioceptive movement illusions due to prolonged stimulation: reversals and aftereffects. PLoS ONE 2:e1037. doi:10.1371/journal.pone.0001037

    Article  PubMed Central  PubMed  Google Scholar 

  • Shibata E, Kaneko F (2013) Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration. Neurosci Lett 541:24–28. doi:10.1016/j.neulet.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  • Solodkin A, Hlustik P, Noll DC, Small SL (2001) Lateralization of motor circuits and handedness during finger movements. Eur J Neurol 8:425–434

  • Stephan KM, Fink GR, Passingham RE et al (1995) Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J Neurophysiol 73:373–386

    CAS  PubMed  Google Scholar 

  • Sveistrup H (2004) Motor rehabilitation using virtual reality. J Neuroeng Rehabil 1:10. doi:10.1186/1743-0003-1-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Thyrion C, Roll J (2009) Perceptual integration of illusory and imagined kinesthetic images. J Neurosci 29:8483–8492. doi:10.1523/JNEUROSCI.0683-09.2009

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris M, Tajadura-Jiménez A, Costantini M (2011) Just a heartbeat away from one’s body: interoceptive sensitivity predicts malleability of body-representations. Proc Biol Sci 278:2470–2476. doi:10.1098/rspb.2010.2547

    Article  PubMed Central  PubMed  Google Scholar 

  • Turolla A, Dam M, Ventura L et al (2013a) Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil 10:85. doi:10.1186/1743-0003-10-85

    Article  PubMed Central  PubMed  Google Scholar 

  • Turolla A, Daud Albasini OA, Oboe R et al (2013b) Haptic-based neurorehabilitation in poststroke patients: a feasibility prospective multicentre trial for robotics hand rehabilitation. Comput Math Methods Med 2013:895492. doi:10.1155/2013/895492

    Article  PubMed Central  PubMed  Google Scholar 

  • Vingerhoets G, Acke F, Alderweireldt A-S et al (2012) Cerebral lateralization of praxis in right- and left-handedness: same pattern, different strength. Hum Brain Mapp 33:763–777. doi:10.1002/hbm.21247

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the EU Information and Communication Technologies Grant (VERE project, FP7-ICT-2009-5, Prot. Num. 257695), the Italian Ministry of Health (RF-2010-2312912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuele Tidoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tidoni, E., Fusco, G., Leonardis, D. et al. Illusory movements induced by tendon vibration in right- and left-handed people. Exp Brain Res 233, 375–383 (2015). https://doi.org/10.1007/s00221-014-4121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4121-8

Keywords

Navigation