Experimental Brain Research

, Volume 233, Issue 1, pp 69–77 | Cite as

Effects of short-term experience on anticipatory eye movements during action observation

  • Corina MöllerEmail author
  • Hubert D. Zimmer
  • Gisa Aschersleben
Research Article


Recent studies have shown that anticipatory eye movements occur during both action observation and action execution. These findings strongly support the direct matching hypothesis, which states that in observing others’ actions, people take advantage of the same action knowledge that enables them to perform the same actions. Furthermore, a connection between action experience and the ability to anticipate action goals has been proposed. Concerning the role of experience, most studies concentrated on motor experts such as athletes and musicians, whereas only few studies investigated whether motor programs can be activated by short-term experience. Applying a pre–post design, we examined whether short-term experience affects anticipatory eye movements during observation. Participants (N = 150 university students) observed scenes showing an actor performing a block stacking task. Subsequently, participants performed either a block stacking task, puzzles, or a pursuit rotor task. Afterward, participants were again provided with the aforementioned block stacking task scenes. Results revealed that the block stacking task group directed their gaze significantly earlier toward the action goals of the block stacking task during posttest trials, compared with Puzzle and pursuit rotor task groups, which did not differ from each other. In accordance with the direct matching hypothesis, our study provides evidence that short-term experience with the block stacking task activates task-specific action knowledge.


Action observation Direct matching hypothesis Anticipatory eye movements Action plans Prediction 



This research was conducted within the International Research Training Group “Adaptive Minds” supported by German Research Foundation (DFG) under Grant 1457. We are grateful to Alexander Kirmße for support with stimuli recording, Laura Weber for help with data collection, and Florian Domnick for support with programming. We would further like to thank two anonymous reviewers for their constructive and helpful comments on an earlier version of the article.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (WMV 1356 kb)

221_2014_4091_MOESM2_ESM.wmv (1.2 mb)
Supplementary material 2 (WMV 1231 kb)


  1. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116PubMedCrossRefGoogle Scholar
  2. Alaerts K, Heremans E, Swinnen SP, Wenderoth N (2009a) How are observed actions mapped to the observer’s motor system? Influence of posture and perspective. Neuropsychologia 47:415–422. doi: 10.1016/j.neuropsychologia.2008.09.012 PubMedCrossRefGoogle Scholar
  3. Alaerts K, Swinnen SP, Wenderoth N (2009b) Is the human primary motor cortex activated by muscular or direction-dependent features of observed movements? Cortex 45:1148–1155. doi: 10.1016/j.cortex.2008.10.005 PubMedCrossRefGoogle Scholar
  4. Ambrosini E, Costantini M, Sinigaglia C (2011) Grasping with the eyes. J Neurophysiol 106:1437–1442. doi: 10.1152/jn.00118.2011 PubMedCrossRefGoogle Scholar
  5. Barnett SM, Ceci SJ (2002) When and where do we apply what we learn? A taxonomy for far transfer. Psychol Bull 128:612–637. doi: 10.1037//0033-2909.128.4.612 PubMedCrossRefGoogle Scholar
  6. Bonini L, Ferrari PF (2011) Evolution of mirror systems: a simple mechanism for complex cognitive functions. Ann NY Acad Sci 1225:166–175. doi: 10.1111/j.1749-6632.2011.06002.x PubMedCentralPubMedCrossRefGoogle Scholar
  7. Brass M, Bekkering H, Prinz W (2001) Movement observation affects movement execution in a simple response task. Acta Psychol 106:3–22CrossRefGoogle Scholar
  8. Buccino G, Binkofski F, Riggio L (2004) The mirror neuron system and action recognition. Brain Lang 89:370–376. doi: 10.1016/S0093-934X(03)00356-0 PubMedCrossRefGoogle Scholar
  9. Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910. doi: 10.1016/j.cub.2006.07.065 PubMedCrossRefGoogle Scholar
  10. Casile A, Giese MA (2006) Nonvisual motor training influences biological motion perception. Curr Biol 16:69–74. doi: 10.1016/j.cub.2005.10.071 PubMedCrossRefGoogle Scholar
  11. Causer J, Ford PR (2014) “Decisions, decisions, decisions”: transfer and specificity of decision-making skill between sports. Cogn Process. doi: 10.1007/s10339-014-0598-0 PubMedGoogle Scholar
  12. Causer J, McCormick SA, Holmes PS (2013) Congruency of gaze metrics in action, imagery and action observation. Front Hum Neurosci 7:1–8. doi: 10.3389/fnhum.2013.00604 CrossRefGoogle Scholar
  13. Costantini M, Ambrosini E, Sinigaglia C (2012a) Does how I look at what you’re doing depend on what I’m doing? Acta Psychol 141:199–204. doi: 10.1016/j.actpsy.2012.07.012 CrossRefGoogle Scholar
  14. Costantini M, Ambrosini E, Sinigaglia C (2012b) Out of your hand’s reach, out of my eyes’ reach. Q J Exp Psychol 65:848–855. doi: 10.1080/17470218.2012.679945 CrossRefGoogle Scholar
  15. Elsner C, D’Ausilio A, Gredebäck G, Falck-Ytter T, Fadiga L (2013) The motor cortex is causally related to predictive eye movements during action observation. Neuropsychologia 51:488–492. doi: 10.1016/j.neuropsychologia.2012.12.007 PubMedCrossRefGoogle Scholar
  16. Flanagan JR, Johansson RS (2003) Action plans used in action observation. Nature 424:769–771PubMedCrossRefGoogle Scholar
  17. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609PubMedCrossRefGoogle Scholar
  18. Gesierich B, Bruzzo A, Ottoboni G, Finos L (2008) Human gaze behaviour during action execution and observation. Acta Psychol 128:324–330. doi: 10.1016/j.actpsy.2008.03.006 CrossRefGoogle Scholar
  19. Gredebäck G, Kochukhova O (2010) Goal anticipation during action observation is influenced by synonymous action capabilities, a puzzling developmental study. Exp Brain Res 202:493–497. doi: 10.1007/s00221-009-2138-1 PubMedCrossRefGoogle Scholar
  20. Gredebäck G, Stasiewicz D, Falck-Ytter T, von Hofsten C, Rosander K (2009) Action type and goal type modulate goal-directed gaze shifts in 14-month-old infants. Dev Psychol 45:1190–1194. doi: 10.1037/a0015667 PubMedCrossRefGoogle Scholar
  21. Hamilton A, Wolpert D, Frith U (2004) Your own action influences how you perceive another person’s action. Curr Biol 14:493–498PubMedCrossRefGoogle Scholar
  22. Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–878PubMedCrossRefGoogle Scholar
  23. Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–202. doi: 10.1017/S0140525X00034026 CrossRefGoogle Scholar
  24. Jeannerod M (2001) Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14:103–109. doi: 10.1006/nimg.2001.0832 CrossRefGoogle Scholar
  25. Johansson RS, Westling G, Bäckström A, Flanagan JR (2001) Eye–hand coordination in object manipulation. J Neurosci 21:6917–6932PubMedGoogle Scholar
  26. Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Biol 13:522–525PubMedCrossRefGoogle Scholar
  27. Kilner JM, Friston KJ, Frith CD (2007) Predictive coding: an account of the mirror neuron system. Cogn Process 8:159–166. doi: 10.1007/s10339-007-0170-2 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Knoblich G, Flach R (2001) Predicting the effects of actions: interactions of perception and action. Psychol Sci 12:467–472PubMedCrossRefGoogle Scholar
  29. Kochukhova O, Gredebäck G (2010) Preverbal infants anticipate that food will be brought to the mouth: an eye tracking study of manual feeding and flying spoons. Child Dev 81:1729–1738PubMedCrossRefGoogle Scholar
  30. Land MF (2009) Vision, eye movements, and natural behavior. Vis Neurosci 26:51. doi: 10.1017/S0952523808080899 PubMedCrossRefGoogle Scholar
  31. Land MF, Hayhoe M (2001) In what ways do eye movements contribute to everyday activities? Vis Res 41:3559–3565PubMedCrossRefGoogle Scholar
  32. Marshall PJ, Bouquet CA, Shipley TF, Young T (2009) Effects of brief imitative experience on EEG desynchronization during action observation. Neuropsychologia 47:2100–2106. doi: 10.1016/j.neuropsychologia.2009.03.022 PubMedCrossRefGoogle Scholar
  33. McCormick SA, Causer J, Holmes PS (2013) Active vision during action execution, observation and imagery: evidence for shared motor representations. PLoS ONE 8:e67761. doi: 10.1371/journal.pone.0067761 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophysiol 88:942–953PubMedGoogle Scholar
  35. Mennie N, Hayhoe M, Sullivan B (2007) Look-ahead fixations: anticipatory eye movements in natural tasks. Exp Brain Res 179:427–442. doi: 10.1007/s00221-006-0804-0 PubMedCrossRefGoogle Scholar
  36. Moore CG, Müller S (2014) Transfer of expert visual anticipation to a similar domain. Q J Exp Psychol 67:186–196. doi: 10.1080/17470218.2013.798003 CrossRefGoogle Scholar
  37. Mulligan D, Hodges NJ (2013) Throwing in the dark: improved prediction of action outcomes following motor training without vision of the action. Psychol Res. doi: 10.1007/s00426-013-0526-4 PubMedGoogle Scholar
  38. Petermann F (2011) Movement assessment battery for children-2 (movement ABC-2)—manual. Pearson, FrankfurtGoogle Scholar
  39. Prinz W (1990) A common coding approach to perception and action. In: Neumann O, Prinz W (eds) Relationships between perception and action: current approaches. Springer, Berlin, pp 167–201CrossRefGoogle Scholar
  40. Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129–154CrossRefGoogle Scholar
  41. Quandt LC, Marshall PJ, Bouquet CA, Young T, Shipley TF (2011) Experience with novel actions modulates frontal alpha EEG desynchronization. Neurosci Lett 499:37–41. doi: 10.1016/j.neulet.2011.05.028 PubMedCrossRefGoogle Scholar
  42. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141CrossRefGoogle Scholar
  43. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670. doi: 10.1038/35090060 PubMedCrossRefGoogle Scholar
  44. Rosalie SM, Müller S (2012) A model for the transfer of perceptual-motor skill learning in human behaviors. Res Q Exerc Sport 83:413–421. doi: 10.1080/02701367.2012.10599876 PubMedCrossRefGoogle Scholar
  45. Rosalie SM, Müller S (2014) Expertise facilitates the transfer of anticipation skill across domains. Q J Exp Psychol 67:319–334. doi: 10.1080/17470218.2013.807856 CrossRefGoogle Scholar
  46. Rosander K, von Hofsten C (2011) Predictive gaze shifts elicited during observed and performed actions in 10-month-old infants and adults. Neuropsychologia 49:2911–2917. doi: 10.1016/j.neuropsychologia.2011.06.018 PubMedCrossRefGoogle Scholar
  47. Rotman G (2006) Eye movements when observing predictable and unpredictable actions. J Neurophysiol 96:1358–1369. doi: 10.1152/jn.00227.2006 PubMedCrossRefGoogle Scholar
  48. Sartori L, Begliomini C, Castiello U (2013) Motor resonance in left- and right-handers: evidence for effector-independent motor representations. Front Hum Neurosci 7:1–8. doi: 10.3389/fnhum.2013.00033 Google Scholar
  49. Schütz-Bosbach S, Prinz W (2007) Perceptual resonance: action-induced modulation of perception. Trends Cogn Sci 11:349–355. doi: 10.1016/j.tics.2007.06.005 PubMedCrossRefGoogle Scholar
  50. Smit AC, Van Gisbergen JA (1989) A short-latency transition in saccade dynamics during square-wave tracking and its significance for the differentiation of visually-guided and predictive saccades. Exp Brain Res 76:64–74PubMedCrossRefGoogle Scholar
  51. Sommerville JA, Woodward AL, Needham A (2005) Action experience alters 3-month-old infants’ perception of others’ actions. Cognition 96:B1–B11. doi: 10.1016/j.cognition.2004.07.004 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Taya S, Windridge D, Osman M (2013) Trained eyes: experience promotes adaptive gaze control in dynamic and uncertain visual environments. PLoS ONE 8:e71371. doi: 10.1371/journal.pone.0071371 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tomasino B, Guatto E, Rumiati RI, Fabbro F (2012) The role of volleyball expertise in motor simulation. Acta Psychol 139:1–6. doi: 10.1016/j.actpsy.2011.11.006 CrossRefGoogle Scholar
  54. Urgesi C, Candidi M, Fabbro F, Romani M, Aglioti SM (2006) Motor facilitation during action observation: topographic mapping of the target muscle and influence of the onlooker’s posture. Eur J Neurosci 23:2522–2530. doi: 10.1111/j.1460-9568.2006.04772.x PubMedCrossRefGoogle Scholar
  55. Wells SG, Barnes GR (1998) Fast, anticipatory smooth-pursuit eye movements appear to depend on a short-term store. Exp Brain Res 120:129–133PubMedCrossRefGoogle Scholar
  56. Williams AM, Ward P, Knowles JM, Smeeton NJ (2002) Anticipation skill in a real-world task: measurement, training, and transfer in tennis. J Exp Psychol Appl 8:259–270. doi: 10.1037/1076-898X.8.4.259 PubMedCrossRefGoogle Scholar
  57. Wöllner C, Cañal-Bruland R (2010) Keeping an eye on the violinist: motor experts show superior timing consistency in a visual perception task. Psychol Res 74:579–585. doi: 10.1007/s00426-010-0280-9 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Corina Möller
    • 1
    Email author
  • Hubert D. Zimmer
    • 2
  • Gisa Aschersleben
    • 1
  1. 1.Developmental Psychology UnitSaarland UniversitySaarbrückenGermany
  2. 2.Brain and Cognition UnitSaarland UniversitySaarbrückenGermany

Personalised recommendations