Experimental Brain Research

, Volume 232, Issue 11, pp 3555–3567 | Cite as

Playing beautifully when you have to be fast: spatial and temporal symmetries of movement patterns in skilled piano performance at different tempi

  • Floris T. van VugtEmail author
  • Shinichi Furuya
  • Henning Vauth
  • Hans-Christian Jabusch
  • Eckart Altenmüller
Research Article


Humans are capable of learning a variety of motor skills such as playing the piano. Performance of these skills is subject to multiple constraints, such as musical phrasing or speed requirements, and these constraints vary from one context to another. In order to understand how the brain controls highly skilled movements, we investigated pianists playing musical scales with their left or right hand at various speeds. Pianists showed systematic temporal deviations away from regularity. At slow tempi, pianists slowed down at the beginning and end of the movement (which we call phrasal template). At fast tempi, temporal deviation traces consisted of three peak delays caused by a thumb-under manoeuvre (which we call neuromuscular template). Intermediate tempi were a linear combination trade-off between these two. We introduce and cross-validate a simple four-parameter model that predicted the timing deviation of each individual note across tempi (R 2 = 0.70). The model can be fitted on the data of individual pianists, providing a novel quantification of expert performance. The present study shows that the motor system can generate complex movements through a dynamic combination of simple movement templates. This provides insight into how the motor system flexibly adapts to varying contextual constraints.


Generalised motor programmes Timing Motor skill Expert musicians Scale playing Movement effectors 



This research was supported by the EBRAMUS (European Brain and Music) Initial Training Network Grant (ITN MC FP7, GA 238157).

Supplementary material

221_2014_4036_MOESM1_ESM.pdf (240 kb)
Supplementary material 1 (PDF 240 kb)


  1. Altenmüller E, Jabusch H-C (2009) Focal hand dystonia in musicians: phenomenology, etiology, and psychological trigger factors. J Hand Ther 22:144–154. doi: 10.1016/j.jht.2008.11.007 PubMedCrossRefGoogle Scholar
  2. Bagesteiro LB, Sainburg RL (2002) Handedness: dominant arm advantages in control of limb dynamics. J Neurophysiol 88:2408–2421. doi: 10.1152/jn.00901.2001 PubMedCrossRefGoogle Scholar
  3. Bakeman R (2005) Recommended effect size statistics for repeated measures designs. Behav Res Methods 37:379–384PubMedCrossRefGoogle Scholar
  4. Bernshteĭn NA (1967) The co-ordination and regulation of movements. Pergamon Press, OxfordGoogle Scholar
  5. Bhatara A, Tirovolas AK, Duan LM et al (2011) Perception of emotional expression in musical performance. J Exp Psychol Hum Percept Perform 921–934. doi: 10.1037/a0021922
  6. Clarke EF (1982) Timing in the performance of Erik Satie’s “Vexations”. Acta Psychol (Amst) 50:1–19. doi: 10.1016/0001-6918(82)90047-6 CrossRefGoogle Scholar
  7. D’ Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci 102:3076–3081. doi: 10.1073/pnas.0500199102 CrossRefGoogle Scholar
  8. D’ Avella A, Portone A, Fernandez L, Lacquaniti F (2006) Control of fast-reaching movements by muscle synergy combinations. J Neurosci 26:7791–7810. doi: 10.1523/JNEUROSCI.0830-06.2006 CrossRefGoogle Scholar
  9. Dalla Bella S, Peretz I, Rousseau L, Gosselin N (2001) A developmental study of the affective value of tempo and mode in music. Cognition 80:B1–B10PubMedCrossRefGoogle Scholar
  10. Desain P, Honing H (1994) Does expressive timing in music performance scale proportionally with tempo? Psychol Res 56:285–292. doi: 10.1007/BF00419658 CrossRefGoogle Scholar
  11. Engel KC, Flanders M, Soechting JF (1997) Anticipatory and sequential motor control in piano playing. Exp Brain Res 113:189–199PubMedCrossRefGoogle Scholar
  12. Friberg A, Sundberg J (1999) Does music performance allude to locomotion? A model of final ritardandi derived from measurements of stopping runners. J Acoust Soc Am 105:1469–1484. doi: 10.1121/1.426687 CrossRefGoogle Scholar
  13. Friberg A, Bresin R, Sundberg J (2006) Overview of the KTH rule system for musical performance. Adv Cogn Psychol 2:145–161CrossRefGoogle Scholar
  14. Furuya S, Soechting JF (2010) Role of auditory feedback in the control of successive keystrokes during piano playing. Exp Brain Res 204:223–237. doi: 10.1007/s00221-010-2307-2 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Furuya S, Flanders M, Soechting JF (2011a) Hand kinematics of piano playing. J Neurophysiol 106:2849–2864. doi: 10.1152/jn.00378.2011 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Furuya S, Goda T, Katayose H et al (2011b) Distinct inter-joint coordination during fast alternate keystrokes in pianists with superior skill. Front Hum Neurosci 5:50. doi: 10.3389/fnhum.2011.00050 PubMedCrossRefPubMedCentralGoogle Scholar
  17. Furuya S, Aoki T, Nakahara H, Kinoshita H (2012) Individual differences in the biomechanical effect of loudness and tempo on upper-limb movements during repetitive piano keystrokes. Hum Mov Sci 31:26–39. doi: 10.1016/j.humov.2011.01.002 PubMedCrossRefGoogle Scholar
  18. Gentner R, Classen J (2006) Modular organization of finger movements by the human central nervous system. Neuron 52:731–742. doi: 10.1016/j.neuron.2006.09.038 PubMedCrossRefGoogle Scholar
  19. Gentner R, Gorges S, Weise D et al (2010) Encoding of motor skill in the corticomuscular system of musicians. Curr Biol 20:1869–1874. doi: 10.1016/j.cub.2010.09.045 PubMedCrossRefGoogle Scholar
  20. Goebl W, Palmer C (2013) Temporal control and hand movement efficiency in skilled music performance. PLoS One 8:e50901. doi: 10.1371/journal.pone.0050901 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Goldstein AG (1957) Judgments of visual velocity as a function of length of observation time. J Exp Psychol 54:457–461PubMedCrossRefGoogle Scholar
  22. Granert O, Peller M, Jabusch H-C et al (2011) Sensorimotor skills and focal dystonia are linked to putaminal grey-matter volume in pianists. J Neurol Neurosurg Psychiatry 1225–1231. doi: 10.1136/jnnp.2011.245811
  23. Hart CB, Giszter SF (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24:5269–5282. doi: 10.1523/jneurosci.5626-03.2004 PubMedCrossRefGoogle Scholar
  24. Heuer H (2007) Control of the dominant and nondominant hand: exploitation and taming of nonmuscular forces. Exp Brain Res 178:363–373. doi: 10.1007/s00221-006-0747-5 PubMedCrossRefGoogle Scholar
  25. Hochberg FH, Leffert RD, Heller MD, Merriman L (1983) Hand difficulties among musicians. JAMA J Am Med Assoc 249:1869–1872CrossRefGoogle Scholar
  26. Hollerbach MJ, Flash T (1982) Dynamic interactions between limb segments during planar arm movement. Biol Cybern 44:67–77PubMedCrossRefGoogle Scholar
  27. Honing H (2003) The final ritard: on music, emotion, and kinematic models. Comput Music J 27:66–72CrossRefGoogle Scholar
  28. Honing H (2006) Evidence for tempo-specific timing in music using a web-based experimental setup. J Exp Psychol Hum Percept Perform 32:780–786. doi: 10.1037/0096-1523.32.3.780 PubMedCrossRefGoogle Scholar
  29. Honing H (2007) Is expressive timing relational invariant under tempo transformation? Psychol Music 35:276–285. doi: 10.1177/0305735607070380 CrossRefGoogle Scholar
  30. Hore J, O’Brien M, Watts S (2005) Control of joint rotations in overarm throws of different speeds made by dominant and nondominant arms. J Neurophysiol 94:3975–3986. doi: 10.1152/jn.00327.2005 PubMedCrossRefGoogle Scholar
  31. Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282. doi: 10.1113/jphysiol.2003.057174 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Jabusch H-C, Vauth H, Altenmüller E (2004) Quantification of focal dystonia in pianists using scale analysis. Mov Disord 19:171–180. doi: 10.1002/mds.10671 PubMedCrossRefGoogle Scholar
  33. Jabusch H-C, Alpers H, Kopiez R et al (2009) The influence of practice on the development of motor skills in pianists: a longitudinal study in a selected motor task. Hum Mov Sci 28:74–84. doi: 10.1016/j.humov.2008.08.001 PubMedCrossRefGoogle Scholar
  34. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727PubMedCrossRefGoogle Scholar
  35. Khalfa S, Roy M, Rainville P et al (2008) Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol 68:17–26. doi: 10.1016/j.ijpsycho.2007.12.001 PubMedCrossRefGoogle Scholar
  36. MacKenzie CL, Van Eerd DL (1990) Rhythmic precision in the performance of piano scales: motor psychophysics and motor programming. Atten Perform 13:375–408Google Scholar
  37. Osu R, Franklin DW, Kato H et al (2002) Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J Neurophysiol 88:991–1004PubMedGoogle Scholar
  38. Palmer C, Krumhansl CL (1987) Independent temporal and pitch structures in determination of musical phrases. J Exp Psychol Hum Percept Perform 13:116–126. doi: 10.1037/0096-1523.13.1.116 PubMedCrossRefGoogle Scholar
  39. Penel A, Drake C (2004) Timing variations in music performance: musical communication, perceptual compensation, and/or motor control? Percept Psychophys 66:545–562PubMedCrossRefGoogle Scholar
  40. Repp BH (1990) Patterns of expressive timing in performances of a Beethoven minuet by nineteen famous pianists. J Acoust Soc Am 88:622–641PubMedCrossRefGoogle Scholar
  41. Repp BH (1994) Relational invariance of expressive microstructure across global tempo changes in music performance: an exploratory study. Psychol Res 56:269–284PubMedCrossRefGoogle Scholar
  42. Rosenkranz K, Butler K, Williamon A, Rothwell JC (2009) Regaining motor control in musician’s dystonia by restoring sensorimotor organization. J Neurosci 29:14627–14636. doi: 10.1523/JNEUROSCI.2094-09.2009 PubMedCrossRefPubMedCentralGoogle Scholar
  43. Sainburg RL (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp Brain Res 142:241–258. doi: 10.1007/s00221-001-0913-8 PubMedCrossRefGoogle Scholar
  44. Sainburg RL, Kalakanis D (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J Neurophysiol 83:2661–2675PubMedGoogle Scholar
  45. Santello M, Flanders M, Soechting JF (2002) Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci 22:1426–1435PubMedGoogle Scholar
  46. Shapiro DC, Zernicke RF, Gregor RJ (1981) Evidence for generalized motor programs using gait pattern analysis. J Mot Behav 13:33–47PubMedCrossRefGoogle Scholar
  47. Summers JJ (1975) The role of timing in motor program representation. J Mot Behav 7:229–241PubMedCrossRefGoogle Scholar
  48. Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407:742–747. doi: 10.1038/35037588 PubMedCrossRefPubMedCentralGoogle Scholar
  49. Tse PU, Intriligator J, Rivest J, Cavanagh P (2004) Attention and the subjective expansion of time. Atten Percept Psychophys 66:1171–1189CrossRefGoogle Scholar
  50. Turk AE, Shattuck-Hufnagel S (2007) Multiple targets of phrase-final lengthening in American English words. J Phon 35:445–472. doi: 10.1016/j.wocn.2006.12.001 CrossRefGoogle Scholar
  51. Van Vugt FT, Jabusch H-C, Altenmüller E (2012) Fingers phrase music differently: trial-to-trial variability in piano scale playing and auditory perception reveal motor chunking. Front Audit Cogn Neurosci 3:495. doi: 10.3389/fpsyg.2012.00495 Google Scholar
  52. Van Vugt FT, Altenmüller E, Jabusch H-C (2013a) The influence of chronotype on making music: circadian fluctuations in pianists’ fine motor skills. Front Hum Neurosci 7:347. doi: 10.3389/fnhum.2013.00347 PubMedPubMedCentralGoogle Scholar
  53. Van Vugt FT, Jabusch H-C, Altenmüller E (2013b) Individuality that is unheard of: systematic temporal deviations in scale playing leave an inaudible pianistic fingerprint. Front Cogn Sci 134. doi: 10.3389/fpsyg.2013.00134
  54. Van Vugt FT, Boullet L, Jabusch H-C, Altenmüller E (2014) Musician’s dystonia in pianists: long-term evaluation of retraining and other therapies. Parkinsonism Relat Disord 20:8–12. doi: 10.1016/j.parkreldis.2013.08.009 PubMedCrossRefGoogle Scholar
  55. Wagner C (1971) The influence of the tempo of playing on the rhythmic structure studied at pianist’s playing scales. In: Vredenbregt J, Wartenweiler J (eds) Med Sport. Karger, Basel, pp 129–132Google Scholar
  56. Windsor L, Aarts R, Desain P et al (2001) The timing of grace notes in skilled musical performance at different tempi: a preliminary case study. Psychol Music 29:149–169. doi: 10.1177/0305735601292005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Floris T. van Vugt
    • 1
    • 2
    Email author
  • Shinichi Furuya
    • 1
  • Henning Vauth
    • 1
  • Hans-Christian Jabusch
    • 1
    • 3
  • Eckart Altenmüller
    • 1
  1. 1.Institute of Music Physiology and Musicians’ MedicineUniversity of Music, Drama, and MediaHanoverGermany
  2. 2.Lyon Neuroscience Research Center CNRS-UMR 5292, INSERM U1028University Lyon-1LyonFrance
  3. 3.Institute of Musicians’ MedicineDresden University of Music Carl Maria von WeberDresdenGermany

Personalised recommendations