Experimental Brain Research

, Volume 232, Issue 10, pp 3159–3173 | Cite as

Hand movements with a phase structure and gestures that depict action stem from a left hemispheric system of conceptualization

  • I. Helmich
  • H. Lausberg
Research Article


The present study addresses the previously discussed controversy on the contribution of the right and left cerebral hemispheres to the production and conceptualization of spontaneous hand movements and gestures. Although it has been shown that each hemisphere contains the ability to produce hand movements, results of left hemispherically lateralized motor functions challenge the view of a contralateral hand movement production system. To examine hemispheric specialization in hand movement and gesture production, ten right-handed participants were tachistoscopically presented pictures of everyday life actions. The participants were asked to demonstrate with their hands, but without speaking what they had seen on the drawing. Two independent blind raters evaluated the videotaped hand movements and gestures employing the Neuropsychological Gesture Coding System. The results showed that the overall frequency of right- and left-hand movements is equal independent of stimulus lateralization. When hand movements were analyzed considering their Structure, the presentation of the action stimuli to the left hemisphere resulted in more hand movements with a phase structure than the presentation to the right hemisphere. Furthermore, the presentation to the left hemisphere resulted in more right and left-hand movements with a phase structure, whereas the presentation to the right hemisphere only increased contralateral left-hand movements with a phase structure as compared to hand movements without a phase structure. Gestures that depict action were primarily displayed in response to stimuli presented in the right visual field than in the left one. The present study shows that both hemispheres possess the faculty to produce hand movements in response to action stimuli. However, the left hemisphere dominates the production of hand movements with a phase structure and gestures that depict action. We therefore conclude that hand movements with a phase structure and gestures that represent action stem from a left hemispheric system of conceptualization.


Gesture Hand movement concepts Praxis Hemispheric specialization 



We wish to thank Michaela Klueh for coding the extensive video material. The study has been supported by the German Research Association (DFG) grant to the second author (LA 1249/2-1).


  1. Abernethy M, Coney J (1996) Semantic category priming in the left cerebral hemisphere. Neuropsychologia 34:339–350PubMedCrossRefGoogle Scholar
  2. Aziz-Zadeh L, Maeda F, Zaidel E, Mazziotta J, Iacoboni M (2002) Lateralization in motor facilitation during action observation: a TMS study. Exp Brain Res 144:127–131. doi: 10.1007/s00221-002-1037-5 PubMedCrossRefGoogle Scholar
  3. Aziz-Zadeh L, Iacoboni M, Zaidel E (2006a) Hemispheric sensitivity to body stimuli in simple reaction time. Exp Brain Res 170:116–121. doi: 10.1007/s00221-005-0194-8 PubMedCrossRefGoogle Scholar
  4. Aziz-Zadeh L, Koski L, Zaidel E, Mazziotta J, Iacoboni M (2006b) Lateralization of the human mirror neuron system. J Neurosci 26:2964–2970. doi: 10.1523/JNEUROSCI.2921-05.2006 PubMedCrossRefGoogle Scholar
  5. Barnsley RH, Rabinovitch MS (1970) Handedness: proficiency versus stated preference. Percept Mot Skills 30:343–362PubMedCrossRefGoogle Scholar
  6. Barroso F, Freedman N, Grands S, Van Meel J (1978) Evocation of two types of hand movements in information processing. J Exp Psychol Hum Percept Perform 4:321–329CrossRefGoogle Scholar
  7. Blonder LX, Bowers D, Heilman KM (1991) The role of the right hemisphere in emotional communication. Brain 114(Pt 3):1115–1127PubMedCrossRefGoogle Scholar
  8. Bryden MP (1964) Tachistoscopic recognition and cerebral dominance. Percept Mot Skills 19:686PubMedCrossRefGoogle Scholar
  9. Buxbaum L, Schwartz M, Coslett H, Carew T (1995) Naturalistic action and praxis in callosal apraxia. Neurocase 1:17CrossRefGoogle Scholar
  10. Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex 15:1243–1249. doi: 10.1093/cercor/bhi007 PubMedCrossRefGoogle Scholar
  11. Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P (2006) Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol 16:1905–1910. doi: 10.1016/j.cub.2006.07.065 PubMedCrossRefGoogle Scholar
  12. Corballis M (2002) From hand to mouth: the origins of language. Princeton UP, New JerseyGoogle Scholar
  13. Dalby JT, Gibson D, Grossi V (1980) Lateralized hand gesture during speech. J Mot Behav 12:292–297PubMedCrossRefGoogle Scholar
  14. Decety J, Grezes J, Costes N et al (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(Pt 10):1763–1777PubMedCrossRefGoogle Scholar
  15. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611PubMedGoogle Scholar
  16. Feyereisen P, Havard I (1999) Mental imagery and production of hand gestures while speaking in younger and older adults. J Nonverbal Behav 23:153–171CrossRefGoogle Scholar
  17. Foltys H, Sparing R, Boroojerdi B, Krings T, Meister IG, Mottaghy FM, Topper R (2001) Motor control in simple bimanual movements: a transcranial magnetic stimulation and reaction time study. Clin Neurophysiol 112:265–274PubMedCrossRefGoogle Scholar
  18. Freedman N (1972) The analysis of movement behavior during the clinical interview. Pergamon, New YorkGoogle Scholar
  19. Freedman N, Bucci W (1981) On kinetic filtering in associative monologue. Semiotica 34(3/4):225–249Google Scholar
  20. Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci 2:493–501PubMedCrossRefGoogle Scholar
  21. Garry MI, Franks IM (2002) Spatially precise bilateral arm movements are controlled by the contralateral hemisphere: evidence from a lateralized visual stimulus paradigm. Exp Brain Res 142:292–296. doi: 10.1007/s00221-001-0949-9 PubMedCrossRefGoogle Scholar
  22. Geschwind N, Galaburda AM (1985) Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Arch Neurol 42:428–459PubMedCrossRefGoogle Scholar
  23. Glosser G, Kaplan E, LoVerme S (1982) Longitudinal neuropsychological report of aphasia following left-subcortical hemorrhage. Brain Lang 15:95–116PubMedCrossRefGoogle Scholar
  24. Goldenberg G, Wimmer A, Holzner F, Wessely P (1985) Apraxia of the left limbs in a case of callosal disconnection: the contribution of medial frontal lobe damage. Cortex 21:135–148PubMedCrossRefGoogle Scholar
  25. Goldenberg G, Hermsdorfer J, Glindemann R, Rorden C, Karnath HO (2007) Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17:2769–2776. doi: 10.1093/cercor/bhm004 PubMedCrossRefGoogle Scholar
  26. Goodale MA (1988) Hemispheric differences in motor control. Behav Brain Res 30:203–214PubMedCrossRefGoogle Scholar
  27. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112:103–111PubMedCrossRefGoogle Scholar
  28. Grezes J, Armony JL, Rowe J, Passingham RE (2003) Activations related to “mirror” and “canonical” neurons in the human brain: an fMRI study. Neuroimage 18:928–937PubMedCrossRefGoogle Scholar
  29. Haaland KY (2006) Left hemisphere dominance for movement. Clin Neuropsychol 20:609–622. doi: 10.1080/13854040590967577 PubMedCrossRefGoogle Scholar
  30. Haaland KY, Harrington DL (1994) Limb-sequencing deficits after left but not right hemisphere damage. Brain Cogn 24:104–122. doi: 10.1006/brcg.1994.1006 PubMedCrossRefGoogle Scholar
  31. Haaland KY, Harrington DL (1996) Hemispheric asymmetry of movement. Curr Opin Neurobiol 6:796–800PubMedCrossRefGoogle Scholar
  32. Hampson E, Kimura D (1984) Hand movement asymmetries during verbal and nonverbal tasks. Can J Psychol 38:102–125PubMedCrossRefGoogle Scholar
  33. Heilman KM, Van Den Abell T (1980) Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30:327–330PubMedCrossRefGoogle Scholar
  34. Helmich I, Rein R, Niermann N, Lausberg H (2013) Hemispheric differences of motor execution: a near-infrared spectroscopy study. Adv Exp Med Biol 789:59–64. doi: 10.1007/978-1-4614-7411-1_9 PubMedCrossRefGoogle Scholar
  35. Holle H, Rein R (2013) Assessing interrater agreement of movement annotations. In: Lausberg H (ed) Understanding body movement and gesture. A guide to empirical research on nonverbal behaviour. Peter Lang, Fankfurt a.M.Google Scholar
  36. Hostetter AB, Alibali MW (2008) Visible embodiment: gestures as simulated action. Psychon Bull Rev 15:495–514Google Scholar
  37. Iacoboni M (2005) Understanding others: imitation, language, empathy. In: Hurley S, Chater N (eds) Perspectives on imitation: imitation in animals. MIT, CambridgeGoogle Scholar
  38. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528PubMedCrossRefGoogle Scholar
  39. Iacoboni M, Zaidel E (1996) Hemispheric independence in word recognition: evidence from unilateral and bilateral presentations. Brain Lang 53:121–140 doi: 10.1006/brln.1996.0040
  40. Iverson JM, Goldin-Meadow S (1998) Why people gesture when they speak. Nature 396:228. doi: 10.1038/24300 PubMedCrossRefGoogle Scholar
  41. Johnson-Frey S, Maloof F, Newman-Norlund R, Farrer C, Inati S, Grafton S (2003) Actions or hand–objects interactions? Human inferior frontal cortex and action observation. Neuron 39:1053–1058PubMedCrossRefGoogle Scholar
  42. Kerkhoff G, Münßinger U, Eberle-Strauss G, Stögerer E (1992) Rehabilitation of hemianopic alexia in patients with postgeniculate visual field disorders. Neuropsychol Rehabil 2:21–42CrossRefGoogle Scholar
  43. Kimura D (1966) Dual functional asymmetry of the brain in visual perception. Neuropsychologia 4:275–285CrossRefGoogle Scholar
  44. Kimura D (1973a) Manual activity during speaking. I. Right-handers. Neuropsychologia 11:45–50PubMedCrossRefGoogle Scholar
  45. Kimura D (1973b) Manual activity during speaking. II. Left-handers. Neuropsychologia 11:51–55PubMedCrossRefGoogle Scholar
  46. Kimura D, Archibald Y (1974) Motor functions of the left hemisphere. Brain 97:337–350PubMedCrossRefGoogle Scholar
  47. Kryger M (2010) Bewegungsverhalten von Patient und Therapeut in als gut und schlecht erlebten Therapiesitzungen. In: Dept. of Neurology, Psychosomatic Medicine, and Psychiatry; Institute of health promotion and clinical movement science. German Sport University, CologneGoogle Scholar
  48. Laban R (1988) The mastery of movement. Billing & Sons Ltd., WorcesterGoogle Scholar
  49. Ladavas E, Del Pesce M, Mangun G, Gazzaniga M (1994) Variations in attentional bias of the disconnected cerebral hemispheres. Cogn Neuropsychol 11:57–74. doi: 10.1080/02643299408251966 CrossRefGoogle Scholar
  50. Lausberg H (1995) Bewegungsverhalten als Prozeßparameter in einer kontrollierten Studie mit funktioneller Entspannung. In: 42. Arbeitstagung des Deutschen Kollegiums fuer Psychosomatische Medizin, Jena, GermanyGoogle Scholar
  51. Lausberg H (2013) Understanding body movement and gesture. A guide to empirical research on nonverbal behaviour. Peter Lang, Fankfurt a.MGoogle Scholar
  52. Lausberg H, Kita S (2003) The content of the message influences the hand choice in co-speech gestures and in gesturing without speaking. Brain Lang 86:57–69PubMedCrossRefGoogle Scholar
  53. Lausberg H, Slöetjes H (2009) Coding gestural behavior with the NEUROGES-ELAN system. Behav Res Methods 41:841–849. doi: 10.3758/BRM.41.3.841 PubMedCrossRefGoogle Scholar
  54. Lausberg H, Davis M, Rothenhausler A (2000) Hemispheric specialization in spontaneous gesticulation in a patient with callosal disconnection. Neuropsychologia 38:1654–1663PubMedCrossRefGoogle Scholar
  55. Lausberg H, Cruz RF, Kita S, Zaidel E, Ptito A (2003) Pantomime to visual presentation of objects: left hand dyspraxia in patients with complete callosotomy. Brain 126:343–360PubMedCrossRefGoogle Scholar
  56. Lausberg H, Zaidel E, Cruz RF, Ptito A (2007) Speech-independent production of communicative gestures: evidence from patients with complete callosal disconnection. Neuropsychologia 45:3092–3104PubMedCrossRefGoogle Scholar
  57. Lavergne J, Kimura D (1987) Hand movement asymmetry during speech: no effect of speaking topic. Neuropsychologia 25:689–693PubMedCrossRefGoogle Scholar
  58. Liepmann H (1908) Drei Aufsätze aus dem Apraxiegebiet. Karger, BerlinGoogle Scholar
  59. Liepmann H, Maas O (1907) Ein Fall von linksseitiger Agraphie und Apraxie bei rechtsseitinger Lähmung. Monatsschr Psychiatr Neurol 10:214–227Google Scholar
  60. Marzi CA, Perani D, Tassinari G, et al (1999) Pathways of interhemispheric transfer in normals and in a split-brain subject. A positron emission tomography study. Exp Brain Res 126:451–458Google Scholar
  61. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  62. Petermann K, Skomroch H, Dvoretska D (2013) Calculating interrater agreement for the activation category. In: Lausberg H (ed) Understanding body movement and gesture. A guide to empirical research on nonverbal behaviour. Peter Lang, Fankfurt a.MGoogle Scholar
  63. Petit L, Simon G, Joliot M et al (2007) Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study. Restor Neurol Neurosci 25:211–225PubMedGoogle Scholar
  64. Pirozzolo FJ, Rayner K (1977) Hemispheric specialization in reading and word recognition. Brain Lang 4:248–261PubMedCrossRefGoogle Scholar
  65. Pollak L, Rabey M, Rothman S, Schiffer J (1996) Giant sinus as a possible risk factor of postoperative pneumocephalus: a case report. J Otolaryngol 25:273–275PubMedGoogle Scholar
  66. Proverbio AM, Riva F (2009) RP and N400 ERP components reflect semantic violations in visual processing of human actions. Neurosci Lett 459:142–146. doi: 10.1016/j.neulet.2009.05.012 PubMedCrossRefGoogle Scholar
  67. Proverbio AM, Azzari R, Adorni R (2013) Is there a left hemispheric asymmetry for tool affordance processing? Neuropsychologia. doi: 10.1016/j.neuropsychologia.2013.09.023 Google Scholar
  68. Rein R (2013) Using 3D kinematics for segmentation of hand movement behaviour: a pilot study and some further suggestions. In: Lausberg H (ed) Understanding body movement and gesture. A guide to empirical research on nonverbal behaviour. Peter Lang, Fankfurt a.M.Google Scholar
  69. Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194PubMedCrossRefGoogle Scholar
  70. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996a) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3:131–141PubMedCrossRefGoogle Scholar
  71. Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Paulesu E, Perani D, Fazio F (1996b) Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111:246–252PubMedCrossRefGoogle Scholar
  72. Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670. doi: 10.1038/3509006035090060 PubMedCrossRefGoogle Scholar
  73. Rumiati RI, Weiss PH, Shallice T, Ottoboni G, Noth J, Zilles K, Fink GR (2004) Neural basis of pantomiming the use of visually presented objects. Neuroimage 21:1224–1231. doi: 10.1016/j.neuroimage.2003.11.017 PubMedCrossRefGoogle Scholar
  74. Salmaso D, Longoni AM (1985) Problems in the assessment of hand preference. Cortex 21:533–549PubMedCrossRefGoogle Scholar
  75. Sassenberg U, Helmich I (2013) A guideline for analyses with NEUROGES-ELAN: including reference values for hand movements in different communicative contexts. In: Lausberg H (ed) Understanding body movement and gesture. A guide to empirical research on nonverbal behaviour. Peter Lang, Fankfurt a.M.Google Scholar
  76. Saygin AP, Wilson SM, Hagler DJ Jr, Bates E, Sereno MI (2004) Point-light biological motion perception activates human premotor cortex. J Neurosci 24:6181–6188. doi: 10.1523/JNEUROSCI.0504-04.200424/27/6181 PubMedCrossRefGoogle Scholar
  77. Serrien DJ, Cassidy MJ, Brown P (2003) The importance of the dominant hemisphere in the organization of bimanual movements. Hum Brain Mapp 18:296–305. doi: 10.1002/hbm.10086 PubMedCrossRefGoogle Scholar
  78. Serrien DJ, Sovijarvi-Spape MM, Farnsworth B (2012) Bimanual control processes and the role of handedness. Neuropsychology 26:802–807. doi: 10.1037/a0030154 PubMedCrossRefGoogle Scholar
  79. Shulman GL, Pope DL, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M (2010) Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J Neurosci 30:3640–3651. doi: 10.1523/JNEUROSCI.4085-09.2010 PubMedCrossRefPubMedCentralGoogle Scholar
  80. Skomroch H, Petermann K, Helmich I, Dvoretska D, Rein R, Kim Z-H, Sassenberg U, Lausberg H. The structure category: inter-rater agreement, frequency distribution, and normative data (in preparation)Google Scholar
  81. Sousa-Poza JF, Rohrberg R, Mercure A (1979) Effects of type of information (abstract–concrete) and field dependence on asymmetry of hand movements during speech. Percept Mot Skills 48:1323–1330PubMedCrossRefGoogle Scholar
  82. Stephens D (1983) Hemispheric language dominance and gesture hand preference. Unpublished doctoral dissertation. In: Department of Behavioral Sciences. University of Chicago, ChicagoGoogle Scholar
  83. Ulrich G (1977) Untersuchungsinstrumente. Videoanalytische Methoden zur Erfassung averbaler Verhaltensparameter bei depressiven Symptomen. Pharmakopsychiatrie 10:176–182CrossRefGoogle Scholar
  84. Ulrich A, Harms K (1985) A video analysis of the non-verbal behaviour of depressed patients before and after treatment. J Affect Disord 9:63–67PubMedCrossRefGoogle Scholar
  85. Urgesi C, Moro V, Candidi M, Aglioti SM (2006) Mapping implied body actions in the human motor system. J Neurosci 26:7942–7949. doi: 10.1523/JNEUROSCI.1289-06.2006 PubMedCrossRefGoogle Scholar
  86. Wyke M (1971) The effects of brain lesions on the performance of bilateral arm movements. Neuropsychologia 9:33–42PubMedCrossRefGoogle Scholar
  87. Helmich I, Skomroch H, Lausberg H. The function of hand movements shifts from the externalization of mental concepts under explicit gestural production conditions to self-regulation and emotional connotation under implicit co-speech production conditions. J Cogn Psychol (in review)Google Scholar
  88. Zaidel D, Sperry RW (1977) Some long-term motor effects of cerebral commissurotomy in man. Neuropsychologia 15:193–204PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Neurology, Psychosomatic Medicine and Psychiatry, Institute of Health Promotion and Clinical Movement ScienceGerman Sport University CologneCologneGermany

Personalised recommendations