Experimental Brain Research

, Volume 232, Issue 6, pp 1773–1782 | Cite as

The effect of cognitive task complexity on gait stability in adolescents following concussion

  • David R. Howell
  • Louis R. Osternig
  • Michael C. Koester
  • Li-Shan Chou
Research Article


Concussion has been reported to result in disturbances to motor and cognitive functions. One way to examine these disturbances is through a dual-task assessment. Many secondary cognitive tasks have been proposed as appropriate tools during concussion assessment; however, task complexity has not been compared within a dual-task investigation. The purpose of this study was to prospectively examine how gait balance control was affected by three secondary cognitive tasks of varying complexity following concussion. Forty-six adolescents completed a dual-task walking protocol which included walking without any cognitive task (WALK), walking while completing a single auditory Stroop (SAS), multiple auditory Stroop (MAS), and a question and answer task (Q&A). Those who sustained a concussion (n = 23, mean age 15.4 ± 1.3 years) reported to the laboratory within 72 h of injury and in the following time increments: 1 week, 2 weeks, 1 month, and 2 months post-injury. Twenty-three healthy control subjects (mean age 15.4 ± 1.3 years), individually matched to each concussion subject, completed the same protocol in similar time increments. The concussion group demonstrated greater total center of mass (COM) medial/lateral displacement in the MAS and Q&A conditions compared with the control group. The concussion group also displayed the greatest peak COM anterior velocity in the least complex condition (WALK), and a significant decrease was observed as task complexity increased (SAS > MAS > Q&A). These findings indicate that gait balance control may be affected by task complexity following concussion and represent a way to identify motor recovery following concussion.


Brain injury Dual task Gait Balance Recovery 



This work was supported by the Veterans Administration (Subcontract Awards Nos. A4842C8 and A4843C), the Department of Defense-TATRC (Award No. W81XWH-11-1-0717), and the translational research award from the University of Oregon and Peace Health Oregon Region.


  1. Barr WB, Prichep LS, Chabot R et al (2012) Measuring brain electrical activity to track recovery from sport-related concussion. Brain Inj 26:58–66. doi: 10.3109/02699052.2011.608216 PubMedCrossRefGoogle Scholar
  2. Bernstein DM (2002) Information processing difficulty long after self-reported concussion. J Int Neuropsychol Soc 8:673–682PubMedCrossRefGoogle Scholar
  3. Bryer EJ, Medaglia JD, Rostami S, Hillary FG (2013) Neural recruitment after mild traumatic brain injury is task dependent: a meta-analysis. J Int Neuropsychol Soc 19:1–12. doi: 10.1017/S1355617713000490 CrossRefGoogle Scholar
  4. Bush G, Whalen PJ, Rosen BR et al (1998) The counting Stroop: an interference task specialized for functional neuroimaging—validation study with functional MRI. Hum Brain Mapp 6:270–282PubMedCrossRefGoogle Scholar
  5. Cantu RC (2001) Posttraumatic retrograde and anterograde amnesia: pathophysiology and implications in grading and safe return to play. J Athl Train 36:244–248PubMedCentralPubMedGoogle Scholar
  6. Catena RD, Donkelaar P, Chou L-S (2006) Cognitive task effects on gait stability following concussion. Exp Brain Res 176:23–31. doi: 10.1007/s00221-006-0596-2 PubMedCrossRefGoogle Scholar
  7. Catena RD, van Donkelaar P, Chou L-S (2007) Altered balance control following concussion is better detected with an attention test during gait. Gait Posture 25:406–411. doi: 10.1016/j.gaitpost.2006.05.006 PubMedCrossRefGoogle Scholar
  8. Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86:189–199. doi: 10.1016/j.pbb.2006.12.001 PubMedCrossRefGoogle Scholar
  9. De Beaumont L, Henry LC, Gosselin N (2012) Long-term functional alterations in sports concussion. Neurosurg Focus 33:E8. doi: 10.3171/2012.9.FOCUS12278 PubMedCrossRefGoogle Scholar
  10. Dreher J-C, Grafman J (2003) Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cereb Cortex 13:329–339. doi: 10.1093/cercor/13.4.329 PubMedCrossRefGoogle Scholar
  11. Drew AS, Langan J, Halterman C et al (2007) Attentional disengagement dysfunction following mTBI assessed with the gap saccade task. Neurosci Lett 417:61–65. doi: 10.1016/j.neulet.2007.02.038 PubMedCrossRefGoogle Scholar
  12. Fait P, Swaine B, Cantin J-F et al (2013) Altered integrated locomotor and cognitive function in elite athletes 30 days postconcussion: a preliminary study. J Head Trauma Rehabil 28:293–301. doi: 10.1097/HTR.0b013e3182407ace PubMedCrossRefGoogle Scholar
  13. Fan J, Flombaum JI, McCandliss BD et al (2003) Cognitive and brain consequences of conflict. Neuroimage 18:42–57. doi: 10.1006/nimg2002.1319 PubMedCrossRefGoogle Scholar
  14. Fazio VC, Lovell MR, Pardini JE, Collins MW (2007) The relation between post concussion symptoms and neurocognitive performance in concussed athletes. NeuroRehabilitation 22:207–216PubMedGoogle Scholar
  15. Giza CC, Kutcher JS, Ashwal S et al (2013) Summary of evidence-based guideline update: evaluation and management of concussion in sports report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. doi: 10.1212/WNL.0b013e31828d57dd PubMedCentralGoogle Scholar
  16. Guskiewicz KM, Bruce SL, Cantu RC et al (2004) National athletic trainers’ association position statement: management of sport-related concussion. J Athl Train 39:280–297PubMedCentralPubMedGoogle Scholar
  17. Hahn ME, Chou L-S (2003) Can motion of individual body segments identify dynamic instability in the elderly? Clin Biomech 18:737–744. doi: 10.1016/S0268-0033(03)00139-6 CrossRefGoogle Scholar
  18. Harmon KG, Drezner JA, Gammons M et al (2013) American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med 47:15–26. doi: 10.1136/bjsports-2012-091941 PubMedCrossRefGoogle Scholar
  19. Henry LC, Tremblay S, Leclerc S et al (2011) Metabolic changes in concussed American football players during the acute and chronic post-injury phases. BMC Neurol 11:105. doi: 10.1186/1471-2377-11-105 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Howell D, Osternig L, van Donkelaar P et al (2013a) Effects of concussion on attention and executive function in adolescents. Med Sci Sports Exerc 45:1030–1037. doi: 10.1249/MSS.0b013e3182814595 PubMedCrossRefGoogle Scholar
  21. Howell DR, Osternig LR, Chou L-S (2013b) Dual-task effect on gait balance control in adolescents with concussion. Arch Phys Med Rehabil 94:1513–1520. doi: 10.1016/j.apmr.2013.04.015 PubMedCrossRefGoogle Scholar
  22. Katz-Leurer M, Rotem H, Keren O, Meyer S (2011) Effect of concurrent cognitive tasks on gait features among children post-severe traumatic brain injury and typically-developed controls. Brain Inj 25:581–586. doi: 10.3109/02699052.2011.572943 PubMedCrossRefGoogle Scholar
  23. Lajoie Y, Teasdale N, Bard C, Fleury M (1993) Attentional demands for static and dynamic equilibrium. Exp Brain Res 97:139–144PubMedCrossRefGoogle Scholar
  24. Lee H, Sullivan SJ, Schneiders AG (2013) The use of the dual-task paradigm in detecting gait performance deficits following a sports-related concussion: a systematic review and meta-analysis. J Sci Med Sport 16:2–7. doi: 10.1016/j.jsams.2012.03.013 PubMedCrossRefGoogle Scholar
  25. Luna B, Garver KE, Urban TA et al (2004) Maturation of cognitive processes from late childhood to adulthood. Child Dev 75:1357–1372. doi: 10.1111/j.1467-8624.2004.00745.x PubMedCrossRefGoogle Scholar
  26. Ma R, Miller CD, Hogan MV et al (2012) Sports-related concussion: assessment and management. J Bone Jt Surg Am 94:1618–1627. doi: 10.2106/JBJS.K.01127 CrossRefGoogle Scholar
  27. Martini DN, Sabin MJ, DePesa SA et al (2011) The chronic effects of concussion on gait. Arch Phys Med Rehabil 92:585–589. doi: 10.1016/j.apmr.2010.11.029 PubMedCrossRefGoogle Scholar
  28. McCrory P, Johnston K, Meeuwisse W et al (2005) Summary and agreement statement of the 2nd international conference on concussion in Sport, Prague 2004. Br J Sports Med 39:196–204PubMedCentralPubMedGoogle Scholar
  29. McCrory P, Meeuwisse W, Johnston K et al (2009) Consensus statement on concussion in sport: the 3rd international conference on concussion in sport held in Zurich, November 2008. J Athl Train 44:434–448PubMedCentralPubMedCrossRefGoogle Scholar
  30. McCrory P, Meeuwisse WH, Aubry M et al (2013) Consensus statement on concussion in sport: the 4th international conference on concussion in sport held in Zurich, November 2012. Br J Sports Med 47:250–258. doi: 10.1136/bjsports-2013-092313 PubMedCrossRefGoogle Scholar
  31. McCulloch KL, Buxton E, Hackney J, Lowers S (2010) Balance, attention, and dual-task performance during walking after brain injury. J Head Trauma Rehabil 25:155–163. doi: 10.1097/HTR.0b013e3181dc82e7 PubMedCrossRefGoogle Scholar
  32. Parker TM, Osternig LR, Lee H-J et al (2005) The effect of divided attention on gait stability following concussion. Clin Biomech 20:389–395. doi: 10.1016/j.clinbiomech.2004.12.004 CrossRefGoogle Scholar
  33. Parker TM, Osternig LR, Van Donkelaar P, Chou L-S (2006) Gait stability following concussion. Med Sci Sports Exerc 38:1032–1040. doi: 10.1249/01.mss.0000222828.56982.a4 PubMedCrossRefGoogle Scholar
  34. Purcell JJ, Napoliello EM, Eden GF (2011) A combined fMRI study of typed spelling and reading. Neuroimage 55:750–762. doi: 10.1016/j.neuroimage.2010.11.042 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Resch JE, May B, Tomporowski PD, Ferrara MS (2011) Balance performance with a cognitive task: a continuation of the dual-task testing paradigm. J Athl Train 46:170–175. doi: 10.4085/1062-6050-46.2.170 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Rickard T, Romero S, Basso G et al (2000) The calculating brain: an fMRI study. Neuropsychologia 38:325–335. doi: 10.1016/S0028-3932(99)00068-8 PubMedCrossRefGoogle Scholar
  37. Ross L, Register-Mihalik J, Mihalik J et al (2011) Effects of a single-task versus a dual-task paradigm on cognition and balance in healthy subjects. J Sport Rehabil 20:296PubMedGoogle Scholar
  38. Sosnoff J, Broglio S, Ferrara M (2008) Cognitive and motor function are associated following mild traumatic brain injury. Exp Brain Res 187:563–571. doi: 10.1007/s00221-008-1324-x PubMedCrossRefGoogle Scholar
  39. Tallus J, Lioumis P, Hamalainen H et al (2012) Long-lasting TMS motor threshold elevation in mild traumatic brain injury. Acta Neurol Scand 126:178–182. doi: 10.1111/j.1600-0404.2011.01623.x PubMedCrossRefGoogle Scholar
  40. Teel EF, Register-Mihalik JK, Blackburn T, Guskiewicz KM (2013) Balance and cognitive performance during a dual-task: preliminary implications for use in concussion assessment. J Sci Med Sport 16:190–194. doi: 10.1016/j.jsams.2012.09.007 PubMedCrossRefGoogle Scholar
  41. Vallée M, McFadyen BJ, Swaine B et al (2006) Effects of environmental demands on locomotion after traumatic brain injury. Arch Phys Med Rehabil 87:806–813. doi: 10.1016/j.apmr.2006.02.031 PubMedCrossRefGoogle Scholar
  42. Van Donkelaar P, Langan J, Rodriguez E et al (2005) Attentional deficits in concussion. Brain Inj 19:1031–1039. doi: 10.1080/02699050500110363 PubMedCrossRefGoogle Scholar
  43. Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, Hoboken, p 86CrossRefGoogle Scholar
  44. Woltring HJ (1986) A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv Eng Softw 8:104–113. doi: 10.1016/0141-1195(86)90098-7 CrossRefGoogle Scholar
  45. Yogev G, Giladi N, Peretz C et al (2005) Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? Eur J Neurosci 22:1248–1256. doi: 10.1111/j.1460-9568.2005.04298.x PubMedCrossRefGoogle Scholar
  46. Yogev-Seligmann G, Hausdorff JM, Giladi N (2008) The role of executive function and attention in gait. Mov Disord 23:329–342. doi: 10.1002/mds.21720 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David R. Howell
    • 1
  • Louis R. Osternig
    • 1
  • Michael C. Koester
    • 2
  • Li-Shan Chou
    • 1
  1. 1.Department of Human Physiology1240 University of OregonEugeneUSA
  2. 2.Slocum Center for Orthopedics and Sports MedicineEugeneUSA

Personalised recommendations