Experimental Brain Research

, Volume 232, Issue 4, pp 1357–1366 | Cite as

The influence of vertically and horizontally aligned visual distractors on aurally guided saccadic eye movements

  • A. F. Ten Brink
  • T. C. W. Nijboer
  • N. Van der Stoep
  • S. Van der Stigchel
Research Article

Abstract

Eye movements towards a new target can be guided or disrupted by input from multiple modalities. The degree of oculomotor competition evoked by a distractor depends on both distractor and target properties, such as distractor salience or certainty regarding the target location. The ability to localize the target is particularly important when studying saccades made towards auditory targets, since determination of elevation and azimuth of a sound are based on different processes, and these processes may be affected independently by a distractor. We investigated the effects of a visual distractor on saccadic eye movements made to an auditory target in a two-dimensional plane. Results showed that the competition evoked by a vertical visual distractor was stronger compared with a horizontal visual distractor. The eye movements that were not captured by the vertical visual distractor were still influenced by it: a deviation of endpoints was seen in the direction of the visual distractor. Furthermore, the interference evoked by a high-contrast visual distractor was stronger compared with low-contrast visual stimuli, which was reflected by a faster initiation of an eye movement towards the high-contrast visual distractor and a stronger shift of endpoints in the direction of the high-contrast visual distractor. Together, these findings show that the influence of a visual distractor on aurally guided eye movements depends strongly on its location relative to the target, and to a lesser extent, on stimulus contrast.

Keywords

Saccades Eye movements Multisensory interaction Auditory localization Visual distractor 

Notes

Acknowledgments

This research was funded by a grant from the Netherlands organization for Scientific Research: grant 451-10-013 to TCWN.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amlôt R, Walker R, Driver J, Spence C (2003) Multimodal visual-somatosensory integration in saccade generation. Neuropsychologia 41:1–15. doi: 10.1016/S0028-3932(02)00139-2 Google Scholar
  2. Battaglia PW, Jacobs RA, Aslin RN (2003) Bayesian integration of visual and auditory signals for spatial localization. J Opt Soc Am 20:1391–1397. doi: 10.1364/JOSAA.20.001391 CrossRefGoogle Scholar
  3. Bertelson P, Aschersleben G (1998) Automatic visual bias of perceived auditory localization. Psychon B Rev 5:482–489. doi: 10.3758/BF03208826 CrossRefGoogle Scholar
  4. Bolognini N, Frassinetti F, Serino A, Làdavas E (2005) “Acoustical vision” of below threshold stimuli: interaction among spatially converging audiovisual inputs. Exp Brain Res 160:273–282. doi: 10.1007/s00221-004-2005-z PubMedCrossRefGoogle Scholar
  5. Bolognini N, Leo F, Passamonti C, Stein BE, Làdavas E (2007) Multisensory-mediated auditory localization. Perception 36(10):1477–1485. doi: 10.1068/p5846 PubMedCrossRefGoogle Scholar
  6. Colonius H, Arndt PA (2001) A two-stage model for visual-auditory interaction in saccadic latencies. Percept Psychophys 63:126–147. doi: 10.3758/BF03200508 PubMedCrossRefGoogle Scholar
  7. Colonius H, Diederich A, Steenken R (2009) Time-window-of-integration (TWIN) model for saccadic reaction time: effect of auditory masker level on visual–auditory spatial interaction in elevation. Brain Topogr 21:177–184. doi: 10.1007/s10548-009-0091-8 PubMedCrossRefGoogle Scholar
  8. Coren S, Hoenig P (1972) Effect of non-target stimuli on the length of voluntary saccades. Percept Motor Skill 34:499–508. doi: 10.2466/pms.1972.34.2.499 CrossRefGoogle Scholar
  9. Corneil BD, Munoz DP (1996) The influence of auditory and visual distractors on human orienting gaze shifts. J Neurosci 16(24):8193–8207PubMedGoogle Scholar
  10. Corneil BD, Van Wanrooij M, Munoz DP, Van Opstal AJ (2002) Auditory-visual interactions subserving goal-directed saccades in a complex scene. J Neurophysiol 88:438–454. doi: 10.1152/jn.00699.2001 PubMedGoogle Scholar
  11. Doyle MC, Walker R (2002) Multisensory interactions in saccade target selection: curved saccade trajectories. Exp Brain Res 142:116–130. doi: 10.1007/s00221-001-0919-2 PubMedCrossRefGoogle Scholar
  12. Edwards SB, Ginsburgh CL, Henkel CK, Stein BE (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–329. doi: 10.1002/cne.901840207 PubMedCrossRefGoogle Scholar
  13. Findlay JM (1982) Global visual processing for saccadic eye movements. Vision Res 22:1033–1045. doi: 10.1016/0042-6989(82)90040-2 PubMedCrossRefGoogle Scholar
  14. Frens MA, Van Opstal AJ (1995) A quantitative study of auditory evoked saccadic eye movements in two dimensions. Exp Brain Res 107:103–117. doi: 10.1007/BF00228022 PubMedCrossRefGoogle Scholar
  15. Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Percept Psychophys 57:802–816. doi: 10.3758/BF03206796 PubMedCrossRefGoogle Scholar
  16. Godijn R, Theeuwes J (2002) Oculomotor capture and Inhibition of Return: evidence for an oculomotor suppression account of IOR. Psych Res 66:234–246. doi: 10.1007/s00426-002-0098-1 CrossRefGoogle Scholar
  17. Good MD, Gilkey RH (1995) Sound localization in noise: the effect of signal-to-noise ratio. J Acoust Soc Am 99:1108–1117. doi: 10.1121/1.415233 CrossRefGoogle Scholar
  18. Hairston WD, Wallace MT, Vaughan JW, Stein BE, Norris JL, Schirillo JA (2003) Visual localization ability influences cross-modal bias. J Cogn Neurosci 15:20–29. doi: 10.1162/089892903321107792 PubMedCrossRefGoogle Scholar
  19. Hall WC, Moschovakis AK (eds) (2003) The superior colliculus: new approaches for studying sensorimotor integration. CRC Press, Boca RatonGoogle Scholar
  20. Heron J, Whitaker D, McGraw PV (2004) Sensory uncertainty governs the extent of audio-visual interaction. Vision Res 44:2874–2884. doi: 10.1016/j.visres.2004.07.001 Google Scholar
  21. Hunt AR, Olk B, von Mühlenen A, Kingstone A (2004) Integration of competing saccade programs. Cogn Brain Res 19:206–208. doi: 10.1016/j.cogbrainres.2003.12.004 CrossRefGoogle Scholar
  22. Laidlaw KEW, Kingstone A (2010) The time course of vertical, horizontal and oblique saccade trajectories: evidence for greater distractor interference during vertical saccades. Vision Res 50:829–837. doi: 10.1016/j.visres.2010.02.009 PubMedCrossRefGoogle Scholar
  23. Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–159. doi: 10.1146/annurev.ps.42.020191.001031 PubMedCrossRefGoogle Scholar
  24. Munoz DP, Corneil BD (1995) Evidence for interactions between target selection and visual fixation for saccade generation in humans. Exp Brain Res 103:168–173. doi: 10.1007/BF00241974 Google Scholar
  25. Proulx MJ, Egeth HE (2008) Biased competition and visual search: the role of luminance and size contrast. Psychol Res 72:106–113. doi: 10.1007/s00426-006-0077-z PubMedCrossRefGoogle Scholar
  26. Sparks DL (1986) Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev 66:118–171PubMedGoogle Scholar
  27. Sparks DL, Hartwich-Young R (1989) The deep layers of the superior colliculus. Rev Oculomot Res 3:213–255PubMedGoogle Scholar
  28. Stevenson RA, Fister JK, Barnett ZP, Nidiffer AR, Wallace MT (2012) Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Exp Brain Res 219:121–137. doi: 10.1007/s00221-012-3072-1 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Theeuwes J, Kramer AF, Hahn S, Irwin DE (1998) Our eyes do not always go where we want them to go: capture of eyes by new objects. Psychol Sci 9:379–385. doi: 10.1111/1467-9280.00071 CrossRefGoogle Scholar
  30. Theeuwes J, Kramer AF, Hahn S, Irwin DE, Zelinsky GJ (1999) Influence of attentional capture on oculomotor control. J Exp Psychol Hum Percept Perform 25:1595–1608. doi: 10.1037/0096-1523.25.6.1595 PubMedCrossRefGoogle Scholar
  31. Tipper SP, Howard LA, Jackson SR (1997) Selective reaching to grasp: evidence for distractor interference effects. Vis Cogn 4:1–38. doi: 10.1080/713756749 CrossRefGoogle Scholar
  32. Van der Stigchel S (2010) Recent advances in the study of saccade trajectory deviations. Vis Res 50:1619–1627. doi: 10.1016/j.visres.2010.05.028 PubMedCrossRefGoogle Scholar
  33. Van der Stigchel S, Theeuwes J (2008) Differences in distractor-induced deviation between horizontal and vertical saccade trajectories. NeuroReport 19:251–254. doi: 10.1097/WNR.0b013e3282f49b3f PubMedCrossRefGoogle Scholar
  34. Van der Stigchel S, Nijboer TCW (2010) The imbalance of oculomotor capture in unilateral visual neglect. Conscious Cogn 19:186–197. doi: 10.1016/j.concog.2009.11.003 Google Scholar
  35. Van der Stigchel S, Nijboer TCW (2011) The global effect: what determines where the eyes land? J Eye Mov Res 4:1–3Google Scholar
  36. Van der Stigchel S, de Vries J, Bethlehem R, Theeuwes J (2011) A global effect of capture saccades. Exp Brain Res 210:57–65. doi: 10.1007/s00221-011-2602-6 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Van der Stoep N, Nijboer TCW, Van der Stigchel S (2013) Non-lateralized auditory input enhances averaged vectors in the oculomotor system. Exp Brain Res 221:377–384. doi: 10.1007/s00221-012-3178-5 CrossRefGoogle Scholar
  38. Walker R, Deubel H, Schneider WX, Findlay JM (1997) Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J Neurophysiol 78:1108–1119PubMedGoogle Scholar
  39. Zwiers MP, Van Opstal AJ, Cruysberg JRM (2001) A spatial hearing deficit in early-blind humans. J Neurosci 21:1–5PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. F. Ten Brink
    • 1
    • 2
  • T. C. W. Nijboer
    • 1
    • 2
  • N. Van der Stoep
    • 1
  • S. Van der Stigchel
    • 1
  1. 1.Department of Experimental Psychology, Helmholtz InstituteUtrecht UniversityUtrechtThe Netherlands
  2. 2.Brain Center Rudolf Magnus, University Medical Center Utrecht and Center of Excellence for Rehabilitation Medicine, De Hoogstraat RehabilitationUtrechtThe Netherlands

Personalised recommendations