Experimental Brain Research

, Volume 232, Issue 6, pp 1663–1675 | Cite as

Modulation of isochronous movements in a flexible environment: links between motion and auditory experience

  • Riccardo Bravi
  • Claudia Del Tongo
  • Erez James Cohen
  • Gabriele Dalle Mura
  • Alessandro Tognetti
  • Diego MinciacchiEmail author
Research Article


The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist’s flexion–extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio–motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio–motor coupling for specific tasks.


Sensory–motor integration Audio–motor integration Isochronous movements Music 



We wish to thank Drs. Sabrina Matà, Corrado Poggesi, Alberto Cassese (University of Florence, Florence, Italy), and Dr. Alberto Granato (Catholic University, Milan, Italy), for their highlighting comments and suggestions.


  1. Adams RD (1977) Intervening stimulus effects on category judgments of duration. Percept Psychophys 21:527–534CrossRefGoogle Scholar
  2. Aleman A, Nieuwenstein MR, Boecker KBE, de Hann EHF (2000) Music training and mental imagery ability. Neuropsychologia 38:1664–1668. doi: 10.1016/S0028-3932(00)00079-8 PubMedCrossRefGoogle Scholar
  3. Allan LG (1979) The perception of time. Percept Psychophys 26:340–354CrossRefGoogle Scholar
  4. Arias P, Cudeiro J (2008) Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients. Exp Brain Res 186:589–601. doi: 10.1007/s00221-007-1263-y PubMedCrossRefGoogle Scholar
  5. Bengtsson SL, Ullén F, Ehrsson HH, Hashimoto T, Kito T, Naito E, Forssberg H, Sadato N (2009) Listening to rhythms activates motor and premotor cortices. Cortex 45:62–71. doi: 10.1016/j.cortex.2008.07.002 PubMedCrossRefGoogle Scholar
  6. Bishop L, Bailes F, Dean RT (2013) Musical expertise and the ability to imagine loudness. PLoS ONE 8:e56052. doi: 10.1371/journal.pone.0056052 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bove M, Tacchino A, Pelosin E, Moisello C, Abbruzzese G, Ghilardi MF (2009) Spontaneous movement tempo is influenced by observation of rhythmical actions. Brain Res Bull 80:122–127. doi: 10.1016/j.brainresbull.2009.04.008 PubMedCrossRefGoogle Scholar
  8. Bradley MM, Lang PJ (2007) The international affective digitized sounds (2nd edn; IADS-2): affective ratings of sounds and instruction manual. Technical report B-3. University of Florida, Gainesville, Fl Google Scholar
  9. Brochard R, Touzalin P, Després O, Dufour A (2008) Evidence of beat perception via purely tactile stimulation. Brain Res 223:59–64. doi: 10.1016/j.brainres.2008.05.050 CrossRefGoogle Scholar
  10. Brodsky W, Henik A, Rubinstein B, Zorman M (2003) Auditory imagery from musical notation in expert musicians. Percept Psychophys 65:602–612. doi: 10.3758/BF03194586 PubMedCrossRefGoogle Scholar
  11. Burger B, Thompson MR, Luck G, Saarikallio S, Toiviainen P (2013) Influences of rhythm- and timbre-related musical features on characteristics of music-induced movement. Front Psychol 4:1–10. doi: 10.3389/fpsyg.2013.00183 CrossRefGoogle Scholar
  12. Cannam C, Landone C, Sandler M (2010) Sonic visualiser: an open source application for viewing, analysing, and annotating music audio files. Proc ACM Int Conf Multimed. doi: 10.1145/1873951.1874248
  13. Cicchini GM, Arrighi R, Cecchetti L, Giusti M, Burr DC (2012) Optimal encoding of interval timing in expert percussionists. J Neurosci 32:1056–1060. doi: 10.1523/JNEUROSCI.3411-11.2012 PubMedCrossRefGoogle Scholar
  14. Craig JC (1973) A constant error in the perception of brief temporal intervals. Percept Psychophys 13:99–104CrossRefGoogle Scholar
  15. Dannenberg RB, Mohan S (2011) Characterizing tempo change in musical performances. ICMC Proceedings of Ann Arbor, MI Google Scholar
  16. de Dreu MJ, van der Wilk ASD, Poppe E, Kwakkel G, van Wegen EEH (2012) Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: a meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life. Parkinsonism Relat Disord 1:114–119. doi: 10.1016/S1353-8020(11)70036-0 CrossRefGoogle Scholar
  17. del Olmo MF, Cudeiro J (2005) Temporal variability of gait in Parkinson disease: effects of a rehabilitation programme based on rhythmic sound cues. Parkinsonism Relat Disord 11:25–33. doi: 10.1016/j.parkreldis.2004.09.002 PubMedCrossRefGoogle Scholar
  18. del Olmo MF, Arias P, Furio MC, Pozo MA, Cudeiro J (2006) Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients—a combined motor and [18F]-FDG PET study. Parkinsonism Relat Disord 12:155–164PubMedCrossRefGoogle Scholar
  19. Ellis M (1991) Thresholds for detecting tempo change. Psychol Music 19:164–169. doi: 10.1177/0305735691192007 CrossRefGoogle Scholar
  20. Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2004) Musical training enhances automatic encoding of melodic contour and interval structure. J Cogn Neurosci 16:1010–1021. doi: 10.1162/0898929041502706 PubMedCrossRefGoogle Scholar
  21. Fujioka T, Trainor LJ, Ross B, Kakigi R, Pantev C (2005) Automatic encoding of polyphonic melodies in musicians and nonmusicians. J Cogn Neurosci 17:1578–1592. doi: 10.1162/089892905774597263 PubMedCrossRefGoogle Scholar
  22. Greenwald HS, Knill DC, Saunders JA (2005) Integrating visual cues for motor control: a matter of time. Vis Res 45:1975–1989PubMedCrossRefGoogle Scholar
  23. Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72:561–582. doi: 10.3758/APP.72.3.561 PubMedCrossRefGoogle Scholar
  24. Halpern AR (1988) Perceived and imaged tempos of familiar songs. Music Percept 6:193–202CrossRefGoogle Scholar
  25. Halpern AR (1989) Memory for the absolute pitch of familiar songs. Mem Cognit 17:572–581PubMedCrossRefGoogle Scholar
  26. Halpern AR, Zatorre RJ, Bouffard M, Johnson JA (2004) Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia 42:1281–1292. doi: 10.1016/j.neuropsychologia.2003.12.017 PubMedCrossRefGoogle Scholar
  27. Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N (2007) Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci 26:2369–2375PubMedCrossRefGoogle Scholar
  28. Herholz SC, Lappe C, Knief A, Pantev C (2008) Neural basis of music imagery and the effect of musical expertise. Eur J Neurosci 28:2352–2360. doi: 10.1111/j.1460-9568.2008.06515.x PubMedCrossRefGoogle Scholar
  29. Herholz SC, Halpern AR, Zatorre RJ (2012) Neuronal correlates of perception, imagery, and memory for familiar tunes. J Cogn Neurosci 24:1382–1397. doi: 10.1162/jocn_a_00216 PubMedCrossRefGoogle Scholar
  30. Highben Z, Palmer C (2004) Effects of auditory and motor mental practice in memorized piano performance. Bull Counc Res Music Educ 159:58–65Google Scholar
  31. Hubbard TL (2010) Auditory imagery: empirical findings. Psychol Bull 136:302–329. doi: 10.1037/a0018436 PubMedCrossRefGoogle Scholar
  32. Intons-Peterson MJ (1980) The role of loudness in auditory imagery. Mem Cognit 8:385–393PubMedCrossRefGoogle Scholar
  33. Jackendoff R, Lerdahl F (2006) The capacity for music: what is it, and what’s special about it? Cognition 100:33–72PubMedCrossRefGoogle Scholar
  34. Janata P, Paroo K (2006) Acuity of auditory images in pitch and time. Percept Psychophys 68:829–844PubMedCrossRefGoogle Scholar
  35. Jäncke L (2008) Music, memory and emotion. J Biol 7:21. doi: 10.1186/jbiol82 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Keller PE (2012) Mental imagery in music performance: underlying mechanisms and potential benefits. Ann N Y Acad Sci 1252:206–213. doi: 10.1111/j.1749-6632.2011.06439.x PubMedCrossRefGoogle Scholar
  37. Keller PE, Koch I (2006a) The planning and execution of short auditory sequences. Psychon Bull Rev 13:711–716PubMedCrossRefGoogle Scholar
  38. Keller PE, Koch I (2006b) Exogenous and endogenous response priming with auditory stimuli. Adv Cogn Psychol 2:269–276CrossRefGoogle Scholar
  39. Keller PE, Koch I (2008) Action planning in sequential skills: relations to music performance. Q J Exp Psychol (Hove) 61:275–291. doi: 10.1080/17470210601160864 CrossRefGoogle Scholar
  40. Keller PE, Dalla Bella S, Koch I (2010) Auditory imagery shapes movement timing and kinematics: evidence from a musical task. J Exp Psychol Hum Percept Perform 36:508–513. doi: 10.1037/a0017604 PubMedCrossRefGoogle Scholar
  41. Koelewijn T, Bronkhorst A, Theeuwes J (2010) Attention and the multiple stages of multisensory integration: a review of audiovisual studies. Acta Psychol (Amst) 134:372–384. doi: 10.1016/j.actpsy.2010.03.010 CrossRefGoogle Scholar
  42. Large EW, Snyder JS (2009) Pulse and meter as neural resonance. Ann N Y Acad Sci 1169:46–57. doi: 10.1111/j.1749-6632.2009.04550.x PubMedCrossRefGoogle Scholar
  43. Leman M (2007) Embodied music cognition and mediation technology. MIT Press, CambridgeGoogle Scholar
  44. Levitin DJ, Cook PR (1996) Memory for musical tempo: additional evidence that auditory memory is absolute. Percept Psychophys 58:927–935PubMedCrossRefGoogle Scholar
  45. Lorås H, Sigmundsson H, Talcott JB, Öhberg FO, Stensdotter AK (2012) Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals. Exp Brain Res 220:335–347. doi: 10.1007/s00221-012-3142-4 PubMedCrossRefGoogle Scholar
  46. Madison G, Paulin J (2010) Ratings of speed in real music as a function of both original and manipulated beat tempo. J Acoust Soc Am 128:3032–3040. doi: 10.1121/1.3493462 PubMedCrossRefGoogle Scholar
  47. Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27:307–340. doi: 10.1146/annurev.neuro.27.070203.144247 PubMedCrossRefGoogle Scholar
  48. McIntosh GC, Brown SH, Rice RR, Thaut MH (1997) Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:22–26PubMedCentralPubMedCrossRefGoogle Scholar
  49. McKinney MF, Moelants D (2007) Ambiguity in tempo perception: what draws listeners to different metric levels? Music Percept 24:155–165. doi: CrossRefGoogle Scholar
  50. McKinney MF, Moelants D, Davies EP, Klapuri A (2007) Evaluation of audio beat tracking and music tempo extraction algorithms. J New Music Res 36:1–16CrossRefGoogle Scholar
  51. Moelants D (2002) Preferred tempo reconsidered. In: Stevens C, Burnham D, McPherson G, Schubert E, Renwick J (ed) Proceedings of the 7th international conference on music perception and cognition. Sydney, Adelaide: Causal Productions, pp 580–583Google Scholar
  52. Quinn S, Watt R (2006) The perception of tempo in music. Percept 35:267–280. doi: 10.1068/p5353 CrossRefGoogle Scholar
  53. Rammsayer TH (2010) Differences in duration discrimination of filled and empty auditory intervals as a function of base duration. Atten Percept Psychophys 72:1591–1600. doi: 10.3758/APP.72.6.1591 PubMedCrossRefGoogle Scholar
  54. Repp BH (1999a) Detecting deviations from metronomic timing in music: effects of perceptual structure on mental timekeeper. Percept Psychophis 61:529–548CrossRefGoogle Scholar
  55. Repp BH (1999b) Control of expressive and metronomic timing in pianists. J Motor Behav 31:145–164. doi: 10.1080/00222899909600985 CrossRefGoogle Scholar
  56. Repp BH (2005) Sensorimotor synchronization: a review of the tapping literature. Psychon Bull Rev 12:969–992PubMedCrossRefGoogle Scholar
  57. Repp BH (2008) Metrical subdivision results in subjective slowing of the beat. Music Percept 26:19–39CrossRefGoogle Scholar
  58. Repp BH (2011) Temporal evolution of the phase correction response in synchronization of taps with perturbed two-interval rhythms. Exp Brain Res 208:89–101. doi: 10.1007/s00221-010-2462-5 PubMedCrossRefGoogle Scholar
  59. Repp BH, Bruttomesso M (2009) A filled duration illusion in music: effects of metrical subdivision on the perception and production of beat tempo. Adv Cogn Psychol 5:114–134. doi: 10.2478/v10053-008-0071-7 PubMedCentralCrossRefGoogle Scholar
  60. Rochester L, Nieuwboer A, Baker K, Hetherington V, Willems AM, Chavret F, Kwakkel G, Van Wegen E, Lim I, Jones D (2007) The attentional cost of external rhythmical cues and their impact on gait in Parkinson’s disease: effect of cue modality and task complexity. J Neural Transm 114:1243–1248. doi: 10.1007/s00702-007-0756-y PubMedCrossRefGoogle Scholar
  61. Rodger MWM, Craig CM (2011) Timing movements to interval durations specified by discrete or continuous sounds. Exp Brain Res 214:393–402. doi: 10.1007/s00221-011-2837-2 PubMedCrossRefGoogle Scholar
  62. Saijo N, Gomi H (2010) Multiple motor learning strategies in visuomotor rotation. PLoS ONE 5:e9399. doi: 10.1371/journal.pone.0009399 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Sarter M, Fritschy JM (2008) Reporting statistical methods and statistical results in EJN. Eur J Neurosci 28:2363–2364. doi: 10.1111/j.1460-9568.2008.06581.x PubMedCrossRefGoogle Scholar
  64. Schrater PR, Kersten D (2000) How optimal depth cue integration depends on the task. Int J Comput Vis 40:73–91CrossRefGoogle Scholar
  65. Semjen A, Schulze HH, Vorberg D (2000) Timing precision in continuation and synchronization tapping. Psychol Res 63:137–147PubMedCrossRefGoogle Scholar
  66. Studenka BE, Zelaznik HN, Balasubramaniam R (2012) The distinction between tapping and circle drawing with and without tactile feedback: an examination of the sources of timing variance. Q J Exp Psychol (Hove) 65:1086–1100. doi: 10.1080/17470218.2011.640404 CrossRefGoogle Scholar
  67. Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM (1996) Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov Disord 11:193–200PubMedCrossRefGoogle Scholar
  68. Trusheim WH (1993) Audiation and mental imagery: implications for artistic performance. Q J Music Teach Learn 2:139–147Google Scholar
  69. Van Noorden L, Moelants D (1999) Resonance in the perception of musical pulse. J New Music Res 28:43–66. doi: 10.1076/jnmr. CrossRefGoogle Scholar
  70. Wearden JH, Norton R, Martin S, Montford-Bebb O (2007) Internal clock processes and the filled duration illusion. J Exp Psychol Hum Percept Perform 33:716–729. doi: 10.1037/0096-1523.33.3.716 PubMedCrossRefGoogle Scholar
  71. White K, Ashton R, Brown R (1977) The measurement of imagery vividness: normative data and their relationship to sex, age, and modality differences. Br J Psychol 68:203–211. doi: 10.1111/j.2044-8295.1977.tb01576.x CrossRefGoogle Scholar
  72. Wing AM, Doumas M, Welchman AE (2010) Combining multisensory temporal information for movement synchronisation. Exp Brain Res 200:277–282. doi: 10.1007/s00221-009-2134-5 PubMedCrossRefGoogle Scholar
  73. Wittwer JE, Webster KE, Hill K (2013) Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture 37:219–222. doi: 10.1016/j.gaitpost.2012.07.006 PubMedCrossRefGoogle Scholar
  74. Wohlschläger A, Koch R (2000) Synchronization error: An error in time perception? In: Desain P, Windsor L (eds) Rhythm perception and production. Swets and Zeitlinger, Lisse, The Netherlands, pp 115–128Google Scholar
  75. Zarco W, Merchant H, Prado L, Mendez JC (2009) Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J Neurophysiol 102:3191–3202. doi: 10.1152/jn.00066.2009 PubMedCrossRefGoogle Scholar
  76. Zatorre RJ, Halpern AR (2005) Mental concerts: musical imagery and auditory cortex. Neuron 47:9–12. doi: 10.1016/j.neuron.2005.06.013 PubMedCrossRefGoogle Scholar
  77. Zatorre RJ, Chen JL, Penhune VB (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci 8:547–558. doi: 10.1038/nrn2152 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Riccardo Bravi
    • 1
  • Claudia Del Tongo
    • 1
  • Erez James Cohen
    • 1
  • Gabriele Dalle Mura
    • 2
    • 3
  • Alessandro Tognetti
    • 2
    • 3
  • Diego Minciacchi
    • 1
    Email author
  1. 1.Department of Clinical and Experimental Medicine, Physiological Sciences SectionUniversity of FlorenceFlorenceItaly
  2. 2.Research Center E. PiaggioUniversity of PisaPisaItaly
  3. 3.Information Engineering DepartmentUniversity of PisaPisaItaly

Personalised recommendations