Advertisement

Experimental Brain Research

, Volume 232, Issue 4, pp 1137–1143 | Cite as

Sensory electrical stimulation improves foot placement during targeted stepping post-stroke

  • Eric R. Walker
  • Allison S. Hyngstrom
  • Brian D. SchmitEmail author
Research Article

Abstract

Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement.

Keywords

Stroke Stepping Electrical stimulation Foot Hip circumduction Balance Motor control 

Notes

Acknowledgments

This work was supported by an award from the American Heart Association, #10PRE4050015. Additional support was provided by the Ralph and Marion C. Falk Medical Trust. This publication was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Number 8KL2TR000056. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

References

  1. Alexander MS, Flodin BWG, Marigold DS (2011) Prism adaptation and generalization during visually guided locomotor tasks. J Neurophysiol 106:860–871. doi: 10.1152/jn.01040.2010 PubMedCrossRefGoogle Scholar
  2. Balasubramanian CK, Neptune RR, Kautz SA (2010) Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance. Clin Biomech (Bristol, Avon) 25:483–490. doi: 10.1016/j.clinbiomech.2010.02.003 CrossRefGoogle Scholar
  3. Beloozerova IN, Farrell BJ, Sirota MG, Prilutsky BI (2010) Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping. J Neurophysiol 103:2285–2300. doi: 10.1152/jn.00360.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B (1992) Measuring balance in the elderly: validation of an instrument. Can J Public Health 83(Suppl 2):S7–S11PubMedGoogle Scholar
  5. Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA (2006) Anterior–posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke 37:872–876. doi: 10.1161/01.STR.0000204063.75779.8d PubMedCrossRefGoogle Scholar
  6. Bretzner F, Drew T (2005) Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study. J Neurophysiol 94:657–672. doi: 10.1152/jn.01245.2004 PubMedCrossRefGoogle Scholar
  7. Conrad MO, Scheidt RA, Schmit BD (2011a) Effects of wrist tendon vibration on targeted upper-arm movements in poststroke hemiparesis. Neurorehabil Neural Repair 25:61–70. doi: 10.1177/1545968310378507 PubMedCrossRefGoogle Scholar
  8. Conrad MO, Scheidt RA, Schmit BD (2011b) Effects of wrist tendon vibration on arm tracking in people poststroke. J Neurophysiol 106:1480–1488. doi: 10.1152/jn.00404.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Corbin DM, Hart JM, McKeon PO et al (2007) The effect of textured insoles on postural control in double and single limb stance. J Sport Rehabil 16:363–372PubMedGoogle Scholar
  10. Cruz TH, Lewek MD, Dhaher YY (2009) Biomechanical impairments and gait adaptations post-stroke: multi-factorial associations. J Biomech 42:1673–1677. doi: 10.1016/j.jbiomech.2009.04.015 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Davis RB, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587CrossRefGoogle Scholar
  12. Fugl-Meyer AR, Jääskö L, Leyman I et al (1975) The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med 7:13–31PubMedGoogle Scholar
  13. Hesse S, Reiter F, Jahnke M et al (1997) Asymmetry of gait initiation in hemiparetic stroke subjects. Arch Phys Med Rehabil 78:719–724PubMedCrossRefGoogle Scholar
  14. Hof AL, van Bockel RM, Schoppen T, Postema K (2007) Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees. Gait Posture 25:250–258. doi: 10.1016/j.gaitpost.2006.04.013 PubMedCrossRefGoogle Scholar
  15. Hof AL, Vermerris SM, Gjaltema WA (2010) Balance responses to lateral perturbations in human treadmill walking. J Exp Biol 213:2655–2664. doi: 10.1242/jeb.042572 PubMedCrossRefGoogle Scholar
  16. Kaelin-Lang A, Luft AR, Sawaki L et al (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol (Lond) 540:623–633CrossRefGoogle Scholar
  17. Kerrigan DC, Frates EP, Rogan S, Riley PO (2000) Hip hiking and circumduction: quantitative definitions. Am J Phys Med Rehabil 79:247–252PubMedCrossRefGoogle Scholar
  18. Lewek MD, Hornby TG, Dhaher YY, Schmit BD (2007) Prolonged quadriceps activity following imposed hip extension: a neurophysiological mechanism for stiff-knee gait? J Neurophysiol 98:3153–3162. doi: 10.1152/jn.00726.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Mackintosh SFH, Hill K, Dodd KJ et al (2005) Falls and injury prevention should be part of every stroke rehabilitation plan. Clin Rehabil 19:441–451. doi: 10.1191/0269215505cr796oa PubMedCrossRefGoogle Scholar
  20. Marigold DS, Andujar J-E, Lajoie K, Drew T (2011) Chapter 6—motor planning of locomotor adaptations on the basis of vision: the role of the posterior parietal cortex. Prog Brain Res 188:83–100. doi: 10.1016/B978-0-444-53825-3.00011-5 PubMedCrossRefGoogle Scholar
  21. Michael KM, Allen JK, Macko RF (2005) Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil 86:1552–1556. doi: 10.1016/j.apmr.2004.12.026 PubMedCrossRefGoogle Scholar
  22. Mudge S, Stott NS (2009) Timed walking tests correlate with daily step activity in persons with stroke. Arch Phys Med Rehabil 90:296–301. doi: 10.1016/j.apmr.2008.07.025 PubMedCrossRefGoogle Scholar
  23. Neckel ND, Blonien N, Nichols D, Hidler J (2008) Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil 5:19. doi: 10.1186/1743-0003-5-19 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Nonnekes JH, Talelli P, de Niet M et al (2010) Deficits underlying impaired visually triggered step adjustments in mildly affected stroke patients. Neurorehabil Neural Repair 24:393–400. doi: 10.1177/1545968309348317 PubMedCrossRefGoogle Scholar
  25. Novak P, Novak V (2006) Effect of step-synchronized vibration stimulation of soles on gait in Parkinson’s disease: a pilot study. J Neuroeng Rehabil 3:9. doi: 10.1186/1743-0003-3-9 PubMedCentralPubMedCrossRefGoogle Scholar
  26. O’Connor SM, Kuo AD (2009) Direction-dependent control of balance during walking and standing. J Neurophysiol 102:1411–1419. doi: 10.1152/jn.00131.2009 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Priplata AA, Patritti BL, Niemi JB et al (2006) Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol 59:4–12. doi: 10.1002/ana.20670 PubMedCrossRefGoogle Scholar
  28. Reisman DS, Wityk R, Silver K, Bastian AJ (2009) Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair 23:735–744. doi: 10.1177/1545968309332880 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Said CM, Goldie PA, Patla AE, Sparrow WA (2001) Effect of stroke on step characteristics of obstacle crossing. Arch Phys Med Rehabil 82:1712–1719. doi: 10.1053/apmr.2001.26247 PubMedCrossRefGoogle Scholar
  30. Sulzer JS, Gordon KE, Dhaher YY et al (2010) Preswing knee flexion assistance is coupled with hip abduction in people with stiff-knee gait after stroke. Stroke 41:1709–1714. doi: 10.1161/STROKEAHA.110.586917 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Turnbull GI, Charteris J, Wall JC (1995) A comparison of the range of walking speeds between normal and hemiplegic subjects. Scand J Rehabil Med 27:175–182PubMedGoogle Scholar
  32. Tyson SF, Sadeghi-Demneh E, Nester CJ (2013) The effects of transcutaneous electrical nerve stimulation on strength, proprioception, balance and mobility in people with stroke: a randomized controlled cross-over trial. Clin Rehabil 27:785–791. doi: 10.1177/0269215513478227 PubMedCrossRefGoogle Scholar
  33. Wu CW, Seo H-J, Cohen LG (2006) Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil 87:351–357. doi: 10.1016/j.apmr.2005.11.019 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eric R. Walker
    • 1
  • Allison S. Hyngstrom
    • 2
  • Brian D. Schmit
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringMarquette UniversityMilwaukeeUSA
  2. 2.Department of Physical TherapyMarquette UniversityMilwaukeeUSA

Personalised recommendations