Experimental Brain Research

, Volume 232, Issue 4, pp 1117–1126 | Cite as

Agency attribution: event-related potentials and outcome monitoring

  • Jeffery G. Bednark
  • Elizabeth A. Franz
Research Article


Knowledge about the effects of our actions is an underlying feature of voluntary behavior. Given the importance of identifying the outcomes of our actions, it has been proposed that the sensory outcomes of self-made actions are inherently different from those of externally caused outcomes. Thus, the outcomes of self-made actions are likely to be more motivationally significant for an agent. We used event-related potentials to investigate the relationship between the perceived motivational significance of an outcome and the attribution of agency in the presence of others. In our experiment, we assessed agency attribution in the presence of another agent by varying the degree of contiguity between participants’ self-made actions and the sensory outcome. Specifically, we assessed the feedback correct-related positivity (fCRP) and the novelty P3 measures of an outcome’s motivational significance and unexpectedness, respectively. Results revealed that both the fCRP and participants’ agency attributions were significantly influenced by action–outcome contiguity. However, when action–outcome contiguity was ambiguous, novelty P3 amplitude was a reliable indicator of agency attribution. Prior agency attributions were also found to influence attribution in trials with ambiguous and low action–outcome contiguity. Participants’ use of multiple cues to determine agency is consistent with the cue integration theory of agency. In addition to these novel findings, this study supports growing evidence suggesting that reinforcement processes play a significant role in the sense of agency.


Voluntary action Sense of agency Novelty P3 fCRP Reinforcement Action–outcome coupling 



The authors would like to acknowledge the contributions of Rebecca Scott, Nigel Barett, and Jeremy Anderson for their assistance in setting up EEG equipment and the use of the Physical Education laboratory at the University of Otago. We also thank Simmy Poonian and Michel Bednark Ohmer for editorial comments. J.G.B. was supported by a University of Otago PhD scholarship, and E.A.F was a recipient of research funding from a University of Otago Research Grant and a Marsden grant from the Royal Society of New Zealand, during the preparation of the manuscript.


  1. Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatr 155(6):761–767PubMedGoogle Scholar
  2. Baess P, Jacobsen T, Schroeger E (2008) Suppression of the auditory N1 event-related potential component with unpredictable self-initiated tones: evidence for internal forward models with dynamic stimulation. Int J Psychophysiol 70(2):137–143. doi: 10.1016/j.ijpsycho.2008.06.005 CrossRefGoogle Scholar
  3. Bednark JG, Reynolds JNJ, Stafford T, Redgrave P, Franz EA (2013) Creating a movement heuristic for voluntary action: electrophysiological correlates of movement-outcome learning. Cortex 49(3):771–780. doi: 10.1016/j.cortex.2011.12.005 PubMedCrossRefGoogle Scholar
  4. Blakemore SJ, Wolpert D, Frith C (2000) Why can’t you tickle yourself? NeuroReport 11(11):R11PubMedCrossRefGoogle Scholar
  5. Desantis A, Roussel C, Waszak F (2011) On the influence of causal beliefs on the feeling of agency. Conscious Cogn 20(4):1211–1220. doi: 10.1016/j.concog.2011.02.012 PubMedCrossRefGoogle Scholar
  6. Desantis A, Weiss C, Schütz-Bosbach S, Waszak F (2012) Believing and perceiving: authorship belief modulates sensory attenuation. PLoS One 7(5):e37959. doi: 10.1371/journal.pone.0037959 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating. Behav Brain Sci 11(3):357–374CrossRefGoogle Scholar
  8. Eitam B, Kennedy P, Tory Higgins E (2013) Motivation from control. Exp Brain Res 229(3):475–484. doi: 10.1007/s00221-012-3370-7 PubMedCrossRefGoogle Scholar
  9. Elsner B, Hommel B (2001) Effect anticipation and action control. J Exp Psychol Hum Percept Perform 27(1):229–240PubMedCrossRefGoogle Scholar
  10. Elsner B, Hommel B (2004) Contiguity and contingency in action–effect learning. Psychol Res Psychol Forsch 68(2–3):138–154. doi: 10.1007/s00426-003-0151-8 CrossRefGoogle Scholar
  11. Elsner B, Hommel B, Mentschel C, Drzezga A, Prinz W, Conrad B, Siebner H (2002) Linking actions and their perceivable consequences in the human brain. Neuroimage 17(1):364–372. doi: 10.1006/nimg.2002.1162 PubMedCrossRefGoogle Scholar
  12. Foti D, Weinberg A, Dien J, Hajcak G (2011) Event related potential activity in the basal ganglia differentiates rewards from nonrewards: temporospatial principal components analysis and source localization of the feedback negativity. Hum Brain Mapp 32(12):2207–2216. doi: 10.1002/hbm.21182 Google Scholar
  13. Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in Parkinsonism. Science 306(5703):1940–1943. doi: 10.1126/science.1102941 PubMedCrossRefGoogle Scholar
  14. Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav R 25(4):355–373CrossRefGoogle Scholar
  15. Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295(5563):2279–2282PubMedCrossRefGoogle Scholar
  16. Gentsch A, Schuetz-Bosbach S (2011) I did it: unconscious expectation of sensory consequences modulates the experience of self-agency and its functional signature. J Cogn Neurosci 23(12):3817–3828PubMedCrossRefGoogle Scholar
  17. Haggard P, Tsakiris M (2009) The experience of agency: feelings, judgments, and responsibility. Curr Dir Psychol 18(4):242–246CrossRefGoogle Scholar
  18. Hajcak G, Moser JS, Holroyd CB, Simons RF (2006) The feedback-related negativity reflects the binary evaluation of good versus bad outcomes. Biol Psychol 71(2):148–154. doi: 10.1016/j.biopsycho.2005.04.001 PubMedCrossRefGoogle Scholar
  19. Holroyd CB, Coles MGH (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109(4):679–709. doi: 10.1037//0033-295x.109.4.679 PubMedCrossRefGoogle Scholar
  20. Holroyd CB, Coles MGH (2008) Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex 44(5):548–559PubMedCrossRefGoogle Scholar
  21. Holroyd CB, Hajcak G, Larsen JT (2006) The good, the bad and the neutral: electrophysiological responses to feedback stimuli. Brain Res 1105:93–101. doi: 10.1016/j.brainres.2005.12.015 PubMedCrossRefGoogle Scholar
  22. Holroyd CB, Pakzad-Vaezi KL, Krigolson OE (2008) The feedback correct-related positivity: sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology 45(5):688–697. doi: 10.1111/j.1469-8986.2008.00668.x PubMedCrossRefGoogle Scholar
  23. Holroyd CB, Krigolson OE, Lee S (2011) Reward positivity elicited by predictive cues. NeuroReport 22(5):249PubMedCrossRefGoogle Scholar
  24. Howell DC (2013) Statistical methods for psychology, 8th edn. Wadsworth Cengage Learning, Belmont, CAGoogle Scholar
  25. Hughes G, Waszak F (2011) ERP correlates of action effect prediction and visual sensory attenuation in voluntary action. Neuroimage 56(3):1632–1640PubMedCrossRefGoogle Scholar
  26. Hughes G, Desantis A, Waszak F (2013) Attenuation of auditory N1 results from identity-specific action–effect prediction. Eur J Neurosci 37(7):1152–1158. doi: 10.1111/ejn.12120 Google Scholar
  27. Kenemans J, Kok A, Smulders F (1993) Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 88(1):51–63CrossRefGoogle Scholar
  28. Krigolson OE, Holroyd CB, Van Gyn G, Heath M (2008) Electroencephalographic correlates of target and outcome errors. Exp Brain Res 190(4):401–411. doi: 10.1007/s00221-008-1482-x PubMedCrossRefGoogle Scholar
  29. Kuhn S, Nenchev I, Haggard P, Brass M, Gallinat J, Voss M (2011) Whodunnit? Electrophysiological correlates of agency judgements. PLoS One 6(12). doi: 10.1371/journal.pone.0028657
  30. Li P, Jia S, Feng T, Liu Q, Suo T, Li H (2010) The influence of the diffusion of responsibility effect on outcome evaluations: electrophysiological evidence from an ERP study. Neuroimage 52(4):1727–1733. doi: 10.1016/j.neuroimage.2010.04.275 PubMedCrossRefGoogle Scholar
  31. Li P, Han C, Lei Y, Holroyd CB, Li H (2011) Responsibility modulates neural mechanisms of outcome processing: an ERP study. Psychophysiology 48(8):1129–1133. doi: 10.1111/j.1469-8986.2011.01182.x Google Scholar
  32. Luck SJ (2005) An introduction to the event-related potential technique. MIT Press, Cambridge, MAGoogle Scholar
  33. Makeig S, Westerfield M, Jung TP, Covington J, Townsend J, Sejnowski TJ, Courchesne E (1999) Functionally independent components of the late positive event-related potential during visual spatial attention. J Neurosci 19(7):2665PubMedGoogle Scholar
  34. Moore JW, Fletcher PC (2012) Sense of agency in health and disease: a review of cue integration approaches. Conscious Cogn 21(1):59–68. doi: 10.1016/j.concog.2011.08.010 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Moore JW, Wegner DM, Haggard P (2009) Modulating the sense of agency with external cues. Conscious Cogn 18(4):1056–1064. doi: 10.1016/j.concog.2009.05.004 PubMedCrossRefGoogle Scholar
  36. Moore JW, Schneider SA, Schwingenschuh P, Moretto G, Bhatia KP, Haggard P (2010) Dopaminergic medication boosts action–effect binding in Parkinson’s disease. Neuropsychologia 48(4):1125–1132. doi: 10.1016/j.neuropsychologia.2009.12.014 PubMedCrossRefGoogle Scholar
  37. Muhle-Karbe PS, Krebs RM (2012) On the influence of reward on action–effect binding. Front Psychol 3. doi: 10.3389/fpsyg.2012.00450
  38. Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424PubMedCrossRefGoogle Scholar
  39. Peterson DA, Lotz DT, Halgren E, Sejnowski TJ, Poizner H (2010) Choice modulates the neural dynamics of prediction error processing during rewarded learning. Neuroimage 54(2):1385–1394. doi: 10.1016/j.neuroimage.2010.09.051 Google Scholar
  40. Potts GF, Tucker DM (2001) Frontal evaluation and posterior representation in target detection. Cognit Brain Res 11(1):147–156CrossRefGoogle Scholar
  41. Potts GF, Liotti M, Tucker DM, Posner MI (1996) Frontal and inferior temporal cortical activity in visual target detection: evidence from high spatially sampled event-related potentials. Brain Topogr 9(1):3–14CrossRefGoogle Scholar
  42. Redgrave P, Gurney K, Reynolds J (2008) What is reinforced by phasic dopamine signals? Brain Res Rev 58(2):322–339. doi: 10.1016/J.Brainresrev.10.007 PubMedCrossRefGoogle Scholar
  43. Redgrave P, Vautrelle N, Reynolds JNJ (2011) Functional properties of the basal ganglia’s re-entrant loop architecture: selection and reinforcement. Neuroscience 198:138–151. doi: 10.1016/j.neuroscience.2011.07.060 PubMedCrossRefGoogle Scholar
  44. Rilling JK, Gutman DA, Zeh TR, Pagnoni G, Berns GS, Kilts CD (2002) A neural basis for social cooperation. Neuron 35(2):395–405PubMedCrossRefGoogle Scholar
  45. Rushworth MFS, Behrens TEJ, Rudebeck PH, Walton ME (2007) Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour. Trends Cogn Sci 11(4):168–176. doi: 10.1016/j.tics.2007.01.004 PubMedCrossRefGoogle Scholar
  46. Sato A (2009) Both motor prediction and conceptual congruency between preview and action–effect contribute to explicit judgment of agency. Cognition 110(1):74–83. doi: 10.1016/j.cognition.2008.10.011 PubMedCrossRefGoogle Scholar
  47. Synofzik M, Vosgerau G, Newen A (2008a) Beyond the comparator model: a multifactorial two-step account of agency. Conscious Cogn 17(1):219–239PubMedCrossRefGoogle Scholar
  48. Synofzik M, Vosgerau G, Newen A (2008b) I move, therefore I am: a new theoretical framework to investigate agency and ownership. Conscious Cogn 17(2):411–424. doi: 10.1016/j.concog.2008.03.008 PubMedCrossRefGoogle Scholar
  49. Synofzik M, Vosgerau G, Voss M (2013) The experience of agency: an interplay between prediction and postdiction. Front Psychol 4. doi: 10.3389/fpsyg.2013.00127
  50. Takahata K, Takahashi H, Maeda T, Umeda S, Suhara T, Mimura M, Kato M (2012) It’s not my fault: postdictive modulation of intentional binding by monetary gains and losses. PLoS One 7(12):e53421. doi: 10.1371/journal.pone.0053421 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Tomlin D, Kayali MA, King-Casas B, Anen C, Camerer CF, Quartz SR, Montague PR (2006) Agent-specific responses in the cingulate cortex during economic exchanges. Science 312(5776):1047–1050PubMedCrossRefGoogle Scholar
  52. Walton ME, Devlin JT, Rushworth MFS (2004) Interactions between decision making and performance monitoring within prefrontal cortex. Nat Neurosci 7(11):1259–1265. doi: 10.1038/nn1339 PubMedCrossRefGoogle Scholar
  53. Wegner DM, Sparrow B (2004) Authorship processing. In: Gazzaniga MS (ed) The new cognitive neurosciences, 3rd edn. MIT Press, Cambridge, MAGoogle Scholar
  54. Wegner DM, Sparrow B, Winerman L (2004) Vicarious agency: experiencing control over the movements of others. J Pers Soc Psychol 86(6):838PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Queensland Brain InstituteThe University of QueenslandSt LuciaAustralia
  2. 2.Action Brain and Cognition Laboratory, Department of Psychology and fMRIotagoThe University of OtagoDunedinNew Zealand

Personalised recommendations