Advertisement

Experimental Brain Research

, Volume 232, Issue 3, pp 957–973 | Cite as

Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk

  • Bettina Gathmann
  • Frank P. Schulte
  • Stefan Maderwald
  • Mirko Pawlikowski
  • Katrin Starcke
  • Lena C. Schäfer
  • Tobias Schöler
  • Oliver T. Wolf
  • Matthias BrandEmail author
Research Article

Abstract

Stress and additional load on the executive system, produced by a parallel working memory task, impair decision making under risk. However, the combination of stress and a parallel task seems to preserve the decision-making performance [e.g., operationalized by the Game of Dice Task (GDT)] from decreasing, probably by a switch from serial to parallel processing. The question remains how the brain manages such demanding decision-making situations. The current study used a 7-tesla magnetic resonance imaging (MRI) system in order to investigate the underlying neural correlates of the interaction between stress (induced by the Trier Social Stress Test), risky decision making (GDT), and a parallel executive task (2-back task) to get a better understanding of those behavioral findings. The results show that on a behavioral level, stressed participants did not show significant differences in task performance. Interestingly, when comparing the stress group (SG) with the control group, the SG showed a greater increase in neural activation in the anterior prefrontal cortex when performing the 2-back task simultaneously with the GDT than when performing each task alone. This brain area is associated with parallel processing. Thus, the results may suggest that in stressful dual-tasking situations, where a decision has to be made when in parallel working memory is demanded, a stronger activation of a brain area associated with parallel processing takes place. The findings are in line with the idea that stress seems to trigger a switch from serial to parallel processing in demanding dual-tasking situations.

Keywords

Stress Decision making under risk GDT 2-back task Executive functions Serial-to-parallel shift 

Notes

Acknowledgments

The work was supported by the German Research Foundation (BR 2894/6-1 and WO773/11-1).

References

  1. Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658. doi: 10.1111/j.1471-4159.1989.tb09224.x PubMedGoogle Scholar
  2. Åhs F, Furmark T, Michelgård Å, Långström B, Appel L, Wolf OT, Kirschbaum C, Fredrikson M (2006) Hypothalamic blood flow correlates positively with stress-induced cortisol levels in subjects with social anxiety disorder. Psychosom Med 68:859–862. doi: 10.1097/01.psy.0000242120.91030.d8 PubMedGoogle Scholar
  3. Alvarez JA, Emory E (2006) Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev 16:17–42. doi: 10.1007/s11065-006-9002-x PubMedGoogle Scholar
  4. Arnsten AFT (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422. doi: 10.1038/nrn2648 PubMedCentralPubMedGoogle Scholar
  5. Arnsten AFT, Goldman-Rakic PS (1998) Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry 55:362–368. doi: 10.1001/archpsyc.55.4.362 PubMedGoogle Scholar
  6. Baddeley A, Della Sala S, Papagno C, Spinnler H (1997) Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology 11:187–194. doi: 10.1037/0894-4105.11.2.187 PubMedGoogle Scholar
  7. Bayard S, Raffard S, Gely-Nargeot M-C (2011) Do facets of self-reported impulsivity predict decision-making under ambiguity and risk? Evidence from a community sample. Psychiatry Res 190:322–326. doi: 10.1016/j.psychres.2011.06.013 PubMedGoogle Scholar
  8. Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50:7–15. doi: 10.1016/0010-0277(94)90018-3 PubMedGoogle Scholar
  9. Bechara A, Damasio H, Tranel D, Damasio AR (1997) Deciding advantageously before knowing the advantageous strategy. Science 275:1293–1295. doi: 10.1126/science.275.5304.1293 PubMedGoogle Scholar
  10. Beste C, Yildiz A, Meissner TW, Wolf OT (2013) Stress improves task processing efficiency in dual-tasks. Behav Brain Res 252:260–265. doi: 10.1016/j.bbr.2013.06.013 PubMedGoogle Scholar
  11. Brand M, Fujiwara E, Borsutzky S, Kalbe E, Kessler J, Markowitsch HJ (2005) Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules: associations with executive functions. Neuropsychology 19:267–277. doi: 10.1037/0894-4105.19.3.267 PubMedGoogle Scholar
  12. Brand M, Labudda K, Markowitsch HJ (2006) Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Netw 19:1266–1276. doi: 10.1016/j.neunet.2006.03.001 PubMedGoogle Scholar
  13. Brand M, Grabenhorst F, Starcke K, Vandekerckhove MMP, Markowitsch HJ (2007) Role of the amygdala in decisions under ambiguity and decisions under risk: evidence from patients with Urbach-Wiethe disease. Neuropsychologia 45:1305–1317. doi: 10.1016/j.neuropsychologia.2006.09.021 PubMedGoogle Scholar
  14. Brand M, Roth-Bauer M, Driessen M, Markowitsch HJ (2008) Executive functions and risky decision-making in patients with opiate dependence. Drug Alcohol Depend 97:64–72. doi: 10.1016/j.drugalcdep.2008.03.017 PubMedGoogle Scholar
  15. Brand M, Laier C, Pawlikowski M, Markowitsch HJ (2009) Decision making with and without feedback: the role of intelligence, strategies, executive functions, and cognitive styles. J Clin Exp Neuropsychol 31:984–998. doi: 10.1080/13803390902776860 PubMedGoogle Scholar
  16. Brett M (1999) The MNI brain and the Talairach atlas. http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach
  17. Callicott JH, Mattay VS, Bertolino A, Finn K, Coppola R, Frank JA, Goldberg TE, Weinberger DR (1999) Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb Cortex 9:20–26. doi: 10.1093/cercor/9.1.20 PubMedGoogle Scholar
  18. Clark L, Bechara A, Damasio H, Aitken MRF, Sahakian BJ, Robbins TW (2008) Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 131:1311–1322. doi: 10.1093/brain/awn066 PubMedGoogle Scholar
  19. Cousijn H, Rijpkema M, Qin S, van Wingen GA, Fernández G (2012) Phasic deactivation of the medial temporal lobe enables working memory processing under stress. Neuroimage 59:1161–1167. doi: 10.1016/j.neuroimage.2011.09.027 PubMedGoogle Scholar
  20. Dalrymple-Alford JC, Kalders AS, Jones RD, Watson RW (1994) A central executive deficit in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 57:360–367Google Scholar
  21. Dedovic K, Rexroth M, Wolff E, Duchesne A, Scherling C, Beaudry T, Lue SD, Lord C, Engert V, Pruessner JC (2009) Neural correlates of processing stressful information: an event-related fMRI study. Brain Res 1293:49–60. doi: 10.1016/j.brainres.2009.06.044 PubMedGoogle Scholar
  22. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974. doi: 10.1126/science.284.5416.970 PubMedGoogle Scholar
  23. Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin Neurobiol 14:218–224. doi: 10.1016/j.conb.2004.03.008 PubMedGoogle Scholar
  24. Delazer M, Sinz H, Zamarian L, Benke T (2007) Decision-making with explicit and stable rules in mild Alzheimer’s disease. Neuropsychologia 45:1632–1641. doi: 10.1016/j.neuropsychologia.2007.01.006 PubMedGoogle Scholar
  25. D’Esposito M, Detre JA, Alsop DC, Shin RK, Atlas S, Grossman M (1995) The neural basis of the central executive system of working memory. Nature 378:279–281. doi: 10.1038/378279a0 PubMedGoogle Scholar
  26. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychol Bull 130:355–391. doi: 10.1037/0033-2909.130.3.355 PubMedGoogle Scholar
  27. Drechsler R, Rizzo P, Steinhausen H-C (2008) Decision-making on an explicit risk-taking task in preadolescents with attention-deficit/hyperactivity disorder. J Neural Transm 115:201–209. doi: 10.1007/s00702-007-0814-5 PubMedGoogle Scholar
  28. Dux PE, Ivanoff J, Asplund CL, Marois R (2006) Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron 52:1109–1120. doi: 10.1016/j.neuron.2006.11.009 PubMedCentralPubMedGoogle Scholar
  29. Easterbrook JA (1959) The effect of emotion on cue utilization and the organization of behavior. Psychol Rev 66:183–201. doi: 10.1037/h0047707 PubMedGoogle Scholar
  30. Eatough EM, Shirtcliff EA, Hanson JL, Pollak SD (2009) Hormonal reactivity to MRI scanning in adolescents. Psychoneuroendocrinology 34:1242–1246. doi: 10.1016/j.psyneuen.2009.03.006 PubMedCentralPubMedGoogle Scholar
  31. Ernst M, Nelson EE, McClure EB, Monk CS, Munson S, Eshel N, Zarahn E, Leibenluft E, Zametkin A, Towbin K, Blair J, Charney D, Pine DS (2004) Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42:1585–1597. doi: 10.1016/j.neuropsychologia.2004.05.011 PubMedGoogle Scholar
  32. Ersche KD, Fletcher PC, Lewis SJG, Clark L, Stocks Gee G, London M, Deakin JB, Robbins TW, Sahakian BJ (2005) Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology 180:612–623. doi: 10.1007/s00213-005-2205-7 PubMedCentralPubMedGoogle Scholar
  33. Euteneuer F, Schaefer F, Stuermer R, Boucsein W, Timmermann L, Barbe MT, Ebersbach G, Otto J, Kessler J, Kalbe E (2009) Dissociation of decision-making under ambiguity and decision-making under risk in patients with Parkinson’s disease: a neuropsychological and psychophysiological study. Neuropsychologia 47:2882–2890. doi: 10.1016/j.neuropsychologia.2009.06.014 PubMedGoogle Scholar
  34. Evans JSBT (2003) In two minds: dual-process accounts of reasoning. Trends Cogn Sci 7:454–459. doi: 10.1016/j.tics.2003.08.012 PubMedGoogle Scholar
  35. Fond G, Bayard S, Capdevielle D, Del-Monte J, Mimoun N, Macgregor A, Boulenger J-P, Gely-Nargeot M-C, Raffard S (2012) A further evaluation of decision-making under risk and under ambiguity in schizophrenia. Eur Arch Psychiatry Clin Neurosci 263:249–257. doi: 10.1007/s00406-012-0330-y PubMedGoogle Scholar
  36. Forbes EE, May JC, Siegle GJ, Ladouceur CD, Ryan ND, Carter CS, Birmaher B, Axelson DA, Dahl RE (2006) Reward-related decision-making in pediatric major depressive disorder: an fMRI study. J Child Psychol Psychiatry 47:1031–1040. doi: 10.1111/j.1469-7610.2006.01673.x PubMedCentralPubMedGoogle Scholar
  37. Forstmann BU, Brass M, Koch I, von Cramon DY (2006) Voluntary selection of task sets revealed by functional magnetic resonance imaging. J Cogn Neurosci 18:388–398. doi: 10.1162/089892906775990589 PubMedGoogle Scholar
  38. Gläscher J, Adolphs R, Damasio H, Bechara A, Rudrauf D, Calamia M, Paul LK, Tranel D (2012) Lesion mapping of cognitive control and value-based decision making in the prefrontal cortex. Proc Natl Acad Sci USA 109:14681–14686. doi: 10.1073/pnas.1206608109 PubMedGoogle Scholar
  39. Greene JD, Hodges JR, Baddeley AD (1995) Autobiographical memory and executive function in early dementia of Alzheimer type. Neuropsychologia 33:1647–1670. doi: 10.1016/0028-3932(95)00046-1 PubMedGoogle Scholar
  40. Het S, Rohleder N, Schoofs D, Kirschbaum C, Wolf OT (2009) Neuroendocrine and psychometric evaluation of a placebo version of the ‘Trier Social Stress Test’. Psychoneuroendocrinology 34:1075–1086. doi: 10.1016/j.psyneuen.2009.02.008 PubMedGoogle Scholar
  41. Hoult DI (2000) The principle of reciprocity in signal strength calculations—a mathematical guide. Concept Magn Reso 12:173–179. doi: 10.1002/1099-0534(2000)12:4<173:AID-CMR1>3.0.CO;2-Q Google Scholar
  42. Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF (2005) Neural systems responding to degrees of uncertainty in human decision-making. Science 310:1680–1683. doi: 10.1126/science.1115327 PubMedGoogle Scholar
  43. Hutson PH, Patel S, Jay MT, Barton CL (2004) Stress-induced increase of cortical dopamine metabolism: attenuation by a tachykinin NK1 receptor antagonist. Eur J Pharmacol 484:57–64. doi: 10.1016/j.ejphar.2003.10.057 PubMedGoogle Scholar
  44. Ito H, Kanno I, Hatazawa J, Miura S (2003) Changes in human cerebral blood flow and myocardial blood flow during mental stress measured by dual positron emission tomography. Ann Nucl Med 17:381–386. doi: 10.1007/bf03006605 PubMedGoogle Scholar
  45. Jurado M, Rosselli M (2007) The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev 17:213–233. doi: 10.1007/s11065-007-9040-z PubMedGoogle Scholar
  46. Kahneman D (2003) A perspective on judgment and choice: mapping bounded rationality. Am Psychol 58:697–720. doi: 10.1037/0003-066X.58.9.697 PubMedGoogle Scholar
  47. Kirschbaum C, Hellhammer DH (1994) Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology 19:313–333. doi: 10.1016/0306-4530(94)90013-2 PubMedGoogle Scholar
  48. Kirschbaum C, Pirke KM, Hellhammer DH (1993) The ‘Trier Social Stress Test’—a tool for investigating psychobiological stress responses in laboratory setting. Neuropsychobiology 28:77–81. doi: 10.1159/000119004 Google Scholar
  49. Koch I, Gade M, Schuch S, Philipp A (2010) The role of inhibition in task switching: a review. Psychon Bull Rev 17:1–14. doi: 10.3758/pbr.17.1.1 PubMedGoogle Scholar
  50. Koechlin E, Hyafil A (2007) Anterior prefrontal function and the limits of human decision-making. Science 318:594–598. doi: 10.2307/20051445 PubMedGoogle Scholar
  51. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151. doi: 10.1038/20178 PubMedGoogle Scholar
  52. Kukolja J, Thiel CM, Wolf OT, Fink GR (2008) Increased cortisol levels in cognitively challenging situations are beneficial in young but not older subjects. Psychopharmacology 201:293–304. doi: 10.1007/s00213-008-1275-8 PubMedGoogle Scholar
  53. Labudda K, Woermann FG, Mertens M, Pohlmann-Eden B, Markowitsch HJ, Brand M (2008) Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Exp Brain Res 187:641–650. doi: 10.1007/s00221-008-1332-x PubMedGoogle Scholar
  54. Labudda K, Brand M, Mertens M, Ollech I, Markowitsch HJ, Woermann FG (2010) Decision making under risk condition in patients with Parkinson’s disease: a behavioural and fMRI study. Behav Neurol 23:131–143. doi: 10.3233/ben-2010-0277 PubMedGoogle Scholar
  55. Lancaster JL, Summerln JL, Rainey L, Freitas CS, Fox PT (1997) The Talairach daemon, a database server for Talairach atlas labels. Neuroimage 5:S633. doi: 10.1002/(SICI)1097-0193(1997)5:4<238:AID-HBM6>3.0.CO;2-4 Google Scholar
  56. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131. doi: 10.1002/1097-0193(200007)10:3<120:aid-hbm30>3.0.co;2-8 PubMedGoogle Scholar
  57. Lehle C, Steinhauser M, Hübner R (2009) Serial or parallel processing in dual tasks: what is more effortful? Psychophysiology 46:502–509. doi: 10.1111/j.1469-8986.2009.00806.x PubMedGoogle Scholar
  58. Lie C-H, Specht K, Marshall JC, Fink GR (2006) Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage 30:1038–1049. doi: 10.1016/j.neuroimage.2005.10.031 PubMedGoogle Scholar
  59. Lighthall NR, Sakaki M, Vasunilashorn S, Nga L, Somayajula S, Chen EY, Samii N, Mather M (2012) Gender differences in reward-related decision processing under stress. Soc Cogn Affect Neurosci 7:476–484. doi: 10.1093/scan/nsr026 PubMedCentralPubMedGoogle Scholar
  60. Lupien SJ, Gillin CJ, Hauger RL (1999) Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose-response study in humans. Behav Neurosci 113:420–430. doi: 10.1037/0735-7044.113.3.420 PubMedGoogle Scholar
  61. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239. doi: 10.1016/s1053-8119(03)00169-1 PubMedGoogle Scholar
  62. Maldjian JA, Laurienti PJ, Burdette JH (2004) Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage 21:450–455. doi: 10.1016/j.neuroimage.2003.09.032 PubMedGoogle Scholar
  63. Manes F, Sahakian B, Clark L, Rogers R, Antoun N, Aitken M, Robbins T (2002) Decision-making processes following damage to the prefrontal cortex. Brain 125:624–639. doi: 10.1093/brain/awf049 PubMedGoogle Scholar
  64. Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. doi: 10.1146/annurev.neuro.24.1.167 PubMedGoogle Scholar
  65. Morrow BA, Roth RH, Elsworth JD (2000) TMT, a predator odor, elevates mesoprefrontal dopamine metabolic activity and disrupts short-term working memory in the rat. Brain Res Bull 52:519–523. doi: 10.1016/S0361-9230(00)00290-2 PubMedGoogle Scholar
  66. Oei N, Elzinga B, Wolf OT, Ruiter M, Damoiseaux J, Kuijer J, Veltman D, Scheltens P, Rombouts S (2007) Glucocorticoids decrease hippocampal and prefrontal activation during declarative memory retrieval in young men. Brain Imaging Behav 1:31–41. doi: 10.1007/s11682-007-9003-2 PubMedCentralPubMedGoogle Scholar
  67. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedGoogle Scholar
  68. Otsuka Y, Osaka N, Morishita M, Kondo H, Osaka M (2006) Decreased activation of anterior cingulate cortex in the working memory of the elderly. NeuroReport 17:1479–1482. doi: 10.1097/01.wnr.0000236852.63092.9f PubMedGoogle Scholar
  69. Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-Back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25:46–59. doi: 10.1002/hbm.20131 PubMedGoogle Scholar
  70. Pabst S, Schoofs D, Pawlikowski M, Brand M, Wolf OT (2013) Paradoxical effects of stress and an executive task on decisions under risk. Behav Neurosci 369–379. doi: 10.1037/a0032334
  71. Pesenti M, Thioux M, Seron X, De Volder A (2000) Neuroanatomical substrates of arabic number processing, numerical comparison, and simple addition: a PET study. J Cogn Neurosci 12:461–479. doi: 10.1162/089892900562273 PubMedGoogle Scholar
  72. Plessow F, Fischer R, Kirschbaum C, Goschke T (2011) Inflexibly focused under stress: acute psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with increasing time lag to the stressor. J Cogn Neurosci 23:3218–3227. doi: 10.1162/jocn_a_00024 PubMedGoogle Scholar
  73. Plessow F, Kiesel A, Kirschbaum C (2012a) The stressed prefrontal cortex and goal-directed behaviour: acute psychosocial stress impairs flexible implementation of task goals. Exp Brain Res 216:397–408. doi: 10.1007/s00221-011-2943-1 PubMedGoogle Scholar
  74. Plessow F, Schade S, Kirschbaum C, Fischer R (2012b) Better not to deal with two tasks at the same time when stressed? Acute psychosocial stress reduces task shielding in dual-task performance. Cogn Affect Behav Neurosci 12:557–570. doi: 10.3758/s13415-012-0098-6 PubMedGoogle Scholar
  75. Porcelli AJ, Delgado MR (2009) Acute stress modulates risk taking in financial decision making. Psychol Sci 20:278–283. doi: 10.1111/j.1467-9280.2009.02288.x PubMedGoogle Scholar
  76. Poser BA, Koopmans PJ, Witzel T, Wald LL, Barth M (2010) Three dimensional echo-planar imaging at 7 Tesla. Neuroimage 51:261–266. doi: 10.1016/j.neuroimage.2010.01.108 PubMedCentralPubMedGoogle Scholar
  77. Pruessner JC, Dedovic K, Khalili-Mahani N, Engert V, Pruessner M, Buss C, Renwick R, Dagher A, Meaney MJ, Lupien S (2008) Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies. Biol Psychiatry 63:234–240. doi: 10.1016/j.biopsych.2007.04.041 PubMedGoogle Scholar
  78. Putman P, Hermans EJ, van Honk J (2010) Cortisol administration acutely reduces threat-selective spatial attention in healthy young men. Physiol Behav 99:294–300. doi: 10.1016/j.physbeh.2009.11.006 PubMedGoogle Scholar
  79. Qin S, Hermans EJ, van Marle HJF, Luo J, Fernández G (2009) Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol Psychiatry 66:25–32. doi: 10.1016/j.biopsych.2009.03.006 PubMedGoogle Scholar
  80. Rao H, Korczykowski M, Pluta J, Hoang A, Detre JA (2008) Neural correlates of voluntary and involuntary risk taking in the human brain: an fMRI study of the Balloon Analog Risk Task (BART). Neuroimage 42:902–910. doi: 10.1016/j.neuroimage.2008.05.046 PubMedGoogle Scholar
  81. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JFW, Sahakian BJ, Robbins TW (1999a) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacol 20:322–339. doi: 10.1016/S0893-133X%2898%2900091-8 Google Scholar
  82. Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ, Robbins TW (1999b) Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 19:9029–9038PubMedGoogle Scholar
  83. Rogers RD, Ramnani N, Mackay C, Wilson JL, Jezzard P, Carter CS, Smith SM (2004) Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 55:594–602. doi: 10.1016/j.biopsych.2003.11.012 PubMedGoogle Scholar
  84. Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES, Robbins TW, Sahakian BJ (2001) Decision-making in mania: a PET study. Brain 124:2550–2563. doi: 10.1093/brain/124.12.2550 PubMedGoogle Scholar
  85. Schär M, Kozerke S, Fischer SE, Boesiger P (2004) Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 51:799–806. doi: 10.1002/mrm.20024 PubMedGoogle Scholar
  86. Schiebener J, Zamarian L, Delazer M, Brand M (2011) Executive functions, categorization of probabilities, and learning from feedback: what does really matter for decision making under explicit risk conditions? J Clin Exp Neuropsychol 33:1025–1039. doi: 10.1080/13803395.2011.595702 PubMedGoogle Scholar
  87. Schoofs D, Preuß D, Wolf OT (2008) Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology 33:643–653. doi: 10.1016/j.psyneuen.2008.02.004 PubMedGoogle Scholar
  88. Schwabe L, Schächinger H, de Kloet ER, Oitzl MS (2010a) Corticosteroids operate as a switch between memory systems. J Cogn Neurosci 22:1362–1372. doi: 10.1162/jocn.2009.21278 PubMedGoogle Scholar
  89. Schwabe L, Wolf OT, Oitzl MS (2010b) Memory formation under stress: quantity and quality. Neurosci Biobehav Rev 34:584–591. doi: 10.1016/j.neubiorev.2009.11.015 PubMedGoogle Scholar
  90. Stanescu-Cosson R, Pinel P, van de Moortele P-F, Le Bihan D, Cohen L, Dehaene S (2000) Understanding dissociations in dyscalculia. Brain 123:2240–2255. doi: 10.1093/brain/123.11.2240 PubMedGoogle Scholar
  91. Starcke K, Brand M (2012) Decision making under stress: a selective review. Neurosci Biobehav Rev 36:1228–1248. doi: 10.1016/j.neubiorev.2012.02.003 PubMedGoogle Scholar
  92. Starcke K, Wolf OT, Markowitsch HJ, Brand M (2008) Anticipatory stress influences decision making under explicit risk conditions. Behav Neurosci 122:1352–1360. doi: 10.1037/a0013281 PubMedGoogle Scholar
  93. Starcke K, Pawlikowski M, Wolf OT, Altstötter-Gleich C, Brand M (2011) Decision-making under risk conditions is susceptible to interference by a secondary executive task. Cogn Process 12:177–182. doi: 10.1007/s10339-010-0387-3 PubMedGoogle Scholar
  94. Svaldi J, Philipsen A, Matthies S (2012) Risky decision-making in borderline personality disorder. Psychiatry Res 197:112–118. doi: 10.1016/j.psychres.2012.01.014 PubMedGoogle Scholar
  95. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New YorkGoogle Scholar
  96. Talati A, Hirsch J (2005) Functional specialization within the medial frontal gyrus for perceptual Go/No-Go decisions based on “what,” “when,” and “where” related information: an fMRI study. J Cogn Neurosci 17:981–993. doi: 10.1162/0898929054475226 PubMedGoogle Scholar
  97. Tessner KD, Walker EF, Hochman K, Hamann S (2006) Cortisol responses of healthy volunteers undergoing magnetic resonance imaging. Hum Brain Mapp 27:889–895. doi: 10.1002/hbm.20229 PubMedGoogle Scholar
  98. Thierry AM, Tassin JP, Blanc G, Glowinski J (1976) Selective activation of the mesocortical DA system by stress. Nature 263:242–244PubMedGoogle Scholar
  99. Tillfors M, Furmark T, Marteinsdottir I, Fischer H, Pissiota A, Langstrom B, Fredrikson M (2001) Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. Am J Psychiatry 158:1220–1226. doi: 10.1176/appi.ajp.158.8.1220 PubMedGoogle Scholar
  100. Tillfors M, Furmark T, Marteinsdottir I, Fredrikson M (2002) Cerebral blood flow during anticipation of public speaking in social phobia: a PET study. Biol Psychiatry 52:1113–1119. doi: 10.1016/s0006-3223(02)01396-3 PubMedGoogle Scholar
  101. Van Snellenberg JX, Whitman J, McDonald JJ, Liotti M (2007) High temporal resolution imaging of spatial working memory. Int Cong Ser 1300:433–436. doi: 10.1016/j.ics.2007.02.037 Google Scholar
  102. Wang J, Rao H, Wetmore GS, Furlan PM, Korczykowski M, Dinges DF, Detre JA (2005) Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc Natl Acad Sci USA 102:17804–17809. doi: 10.1073/pnas.05803082102 PubMedGoogle Scholar
  103. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Per Soc Psychol 54:1063–1070. doi: 10.1037/0022-3514.54.6.1063 Google Scholar
  104. Wilbertz G, Tebartz van Elst L, Delgado MR, Maier S, Feige B, Philipsen A, Blechert J (2012) Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. Neuroimage 60:353–361. doi: 10.1016/j.neuroimage.2011.12.011 PubMedGoogle Scholar
  105. Williams GV, Castner SA (2006) Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 139:263–276. doi: 10.1016/j.neuroscience.2005.09.028 PubMedGoogle Scholar
  106. Wrede KH, Johst S, Dammann P, Umutlu L, Schlamann MU, Sandalcioglu IE, Sure U, Ladd ME, Maderwald S (2012) Caudal image contrast inversion in MPRAGE at 7 Tesla: problem and solution. Acad Radiol 19:172–178. doi: 10.1016/j.acra.2011.10.004 PubMedGoogle Scholar
  107. Xue G, Lu Z, Levin IP, Bechara A (2010) The impact of prior risk experiences on subsequent risky decision-making: the role of the insula. Neuroimage 50:709–716. doi: 10.1016/j.neuroimage.2009.12.097 PubMedCentralPubMedGoogle Scholar
  108. Yarkoni T, Braver TS, Gray JR, Green L (2005) Prefrontal brain activity predicts temporally extended decision-making behavior. J Exp Anal Behav 84:537–554. doi: 10.1901/jeab.2005.121-04 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bettina Gathmann
    • 1
  • Frank P. Schulte
    • 1
    • 2
  • Stefan Maderwald
    • 2
  • Mirko Pawlikowski
    • 1
  • Katrin Starcke
    • 1
  • Lena C. Schäfer
    • 2
  • Tobias Schöler
    • 1
  • Oliver T. Wolf
    • 3
  • Matthias Brand
    • 1
    • 2
    Email author
  1. 1.Department of General Psychology: CognitionUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany
  3. 3.Department of Cognitive PsychologyRuhr-University BochumBochumGermany

Personalised recommendations