Experimental Brain Research

, Volume 232, Issue 3, pp 847–854 | Cite as

Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control

  • Roland Pfister
  • Markus Janczyk
  • Marcel Gressmann
  • Lisa R. Fournier
  • Wilfried Kunde
Research Article


Previous research suggests that motor actions are intentionally generated by recollecting their sensory consequences. Whereas this has been shown to apply to visual or auditory consequences in the environment, surprisingly little is known about the contribution of immediate, body-related consequences, such as proprioceptive and tactile reafferences. Here, we report evidence for a contribution of vibrotactile reafferences to action selection by using a response–effect compatibility paradigm. More precisely, anticipating actions to cause spatially incompatible vibrations delayed responding to a small but reliable degree. Whereas this observation suggests functional equivalence of body-related and environment-related reafferences to action control, the future application of the described experimental procedure might reveal functional peculiarities of specific types of sensory consequences in action control.


Action control Effect anticipations Body-related feedback Ideomotor theory 



This research was supported by a grant from the German Research Council (Deutsche Forschungsgemeinschaft; DFG) to Wilfried Kunde (Ku 1964/2-2).


  1. Ansorge U (2002) Spatial intention-response compatibility. Acta Psychol 109:285–299CrossRefGoogle Scholar
  2. Badets A, Koch I, Toussaint L (2013) Role of an ideomotor mechanism in number processing. Exp Psychol 60:34–43PubMedCrossRefGoogle Scholar
  3. Dutzi IB, Hommel B (2009) The microgenesis of action-effect binding. Psychol Res 73:425–435PubMedCrossRefGoogle Scholar
  4. Elsner B, Hommel B (2001) Effect anticipation and action control. J Exp Psychol Hum 27:229–240CrossRefGoogle Scholar
  5. Frings C, Rothermund K, Wentura D (2007) Distractor repetitions retrieve previous responses to targets. Q J Exp Psychol 60:1367–1377CrossRefGoogle Scholar
  6. Frings C, Amendt A, Spence C (2011) When seeing doesn’t matter: assessing the after-effects of tactile distractor processing in the blind and the sighted. J Exp Psychol Hum 37:1174–1181CrossRefGoogle Scholar
  7. Frings C, Larra M, Gräbener A, Moeller B, Schächinger H (2013a) Stress disrupts distractor-based retrieval of SR episodes. Biol Psychol 93:58–64PubMedCrossRefGoogle Scholar
  8. Frings C, Moeller B, Rothermund K (2013b) Retrieval of event files can be conceptually mediated. Atten Percept Psychophys 75:700–709PubMedCrossRefGoogle Scholar
  9. Gaschler R, Nattkemper D (2012) Instructed task demands and utilization of action effect anticipation. Frontiers Psychol 3. doi: 10.3389/fpsyg.2012.00578
  10. Giesen C, Rothermund K (2011) Affective matching moderates S–R binding. Cogn Emot 25:342–350PubMedCrossRefGoogle Scholar
  11. Greenwald AG (1970) A choice reaction time test of ideomotor theory. J Exp Psychol 86:20–25PubMedCrossRefGoogle Scholar
  12. Harleß E (1861) Der Apparat des Willens [The Apparatus of Will]. Zeitschrift für Philosophie und philosophische Kritik 38:50–73Google Scholar
  13. Herbart JF (1825) Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik [Psychology as a science newly founded on experience, metaphysics, and mathematics]. August Wilhelm Unzer, KönigsbergGoogle Scholar
  14. Herbort O, Butz MV (2012) Too good to be true? Ideomotor theory from a computational perspective. Frontiers Psychol 3:494. doi: 10.3389/fpsyg.2012.00494 CrossRefGoogle Scholar
  15. Herwig A, Horstmann G (2011) Action-effect associations revealed by eye movements. Psychon Bull Rev 18:531–537PubMedCrossRefGoogle Scholar
  16. Herwig A, Waszak F (2012) Action-effect bindings and ideomotor learning in intention- and stimulus-based actions. Frontiers Psychol 3:444. doi: 10.3389/fpsyg.2012.00444 CrossRefGoogle Scholar
  17. Herwig A, Prinz W, Waszak F (2007) Two modes of sensorimotor integration in intention-based and stimulus-based actions. Q J Exp Psychol 60:1540–1554CrossRefGoogle Scholar
  18. Hoffmann J (1993) Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung [Prediction and Realisation: The function of anticipations in human behavioural control and perception]. Hogrefe, GöttingenGoogle Scholar
  19. Hoffmann J, Lenhard A, Sebald A, Pfister R (2009) Movements or targets: what makes an action in action effect learning? Q J Exp Psychol 62:2433–2449CrossRefGoogle Scholar
  20. Hommel B (1993) Inverting the Simon effect by intention. Psychol Res 55:270–279CrossRefGoogle Scholar
  21. Hommel B (2009) Action control according to TEC (theory of event coding). Psychol Res 73:512–526PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–937PubMedCrossRefGoogle Scholar
  23. Hubbard J, Gazzaley A, Morsella E (2011) Traditional response interference effects from anticipated action outcomes: a response–effect compatibility paradigm. Acta Psychol 138:106–110CrossRefGoogle Scholar
  24. James W (1890/1981) The principles of psychology, vol 2. Harvard University Press, CambridgeGoogle Scholar
  25. Janczyk M, Skirde S, Weigelt M, Kunde W (2009) Visual and tactile action effects determine bimanual coordination performance. Hum Mov Sci 28:437–449PubMedCrossRefGoogle Scholar
  26. Janczyk M, Pfister R, Crognale MA, Kunde W (2012a) Effective rotations: action-effects determine the interplay of mental and manual rotations. J Exp Psychol Gen 141:489–501PubMedCrossRefGoogle Scholar
  27. Janczyk M, Pfister R, Kunde W (2012b) On the persistence of tool-based compatibility effects. J Psychol 220:16–22Google Scholar
  28. Janczyk M, Heinemann A, Pfister R (2012c) Instant attraction: immediate action-effect bindings occur for both, stimulus- and goal-driven actions. Frontiers Psychol 3:446. doi: 10.3389/fpsyg.2012.00446 CrossRefGoogle Scholar
  29. Keller PE, Koch I (2006) Exogenous and endogenous response priming with auditory stimuli. Adv Cogn Psychol 2:269–276CrossRefGoogle Scholar
  30. Koch I, Kunde W (2002) Verbal response–effect compatibility. Mem Cogn 30:1297–1303CrossRefGoogle Scholar
  31. Krieghoff V, Brass M, Prinz W, Waszak F (2009) Dissociating what and when of intentional actions. Frontiers Hum Neurosci 3:1–10CrossRefGoogle Scholar
  32. Kühn S, Elsner B, Prinz W, Brass M (2009) Busy doing nothing: evidence for nonaction-effect binding. Psychon Bull Rev 16:542–549PubMedCrossRefGoogle Scholar
  33. Kunde W (2001) Response–effect compatibility in manual choice reaction tasks. J Exp Psychol Hum 27:387–394CrossRefGoogle Scholar
  34. Kunde W (2003) Temporal response–effect compatibility. Psychol Res 67:153–159PubMedCrossRefGoogle Scholar
  35. Kunde W, Koch I, Hoffmann J (2004) Anticipated action effects affect the selection, initiation, and execution of actions. Q J Exp Psychol 57:87–106CrossRefGoogle Scholar
  36. Kunde W, Lozo L, Neumann R (2011) Effect-based control of facial expressions. Evidence from action-effect compatibility. Psychon Bull Rev 18:820–826PubMedCrossRefGoogle Scholar
  37. Kunde W, Pfister R, Janczyk M (2012) The locus of tool-transformation costs. J Exp Psychol Hum 38:703–714CrossRefGoogle Scholar
  38. Ladwig S, Sutter C, Müsseler J (2012) Crosstalk between proximal and distal action effects during tool use. J Psychol 220:10–15Google Scholar
  39. Lotze HR (1852) Medicinische Psychologie oder Physiologie der Seele [Medical psychology or the physiology of the mind]. Weidmann’sche Buchhandlung, LeipzigGoogle Scholar
  40. Moeller B, Frings C (2011) Remember the touch: tactile distractors retrieve previous responses to targets. Exp Brain Res 72:2176–2183Google Scholar
  41. Nattkemper D, Ziessler M, Frensch PA (2010) Binding in voluntary action control. Neurosci Biobehav Rev 34:1092–1101PubMedCrossRefGoogle Scholar
  42. Oriet C, Stevanovski B, Jolicoeur P (2001) Theory of event coding: interesting, but underspecified. Behav Brain Sci 24:897–898Google Scholar
  43. Pfister R, Janczyk M (2012) Harleß’ apparatus of will: 150 years later. Psychol Res 76:561–565PubMedCentralPubMedCrossRefGoogle Scholar
  44. Pfister R, Janczyk M (2013) Confidence intervals for two sample means: calculation, interpretation, and a few simple rules. Adv Cogn Psychol 9:74–80PubMedCentralPubMedGoogle Scholar
  45. Pfister R, Kunde W (2013) Dissecting the response in response–effect compatibility. Exp Brain Res 224:647–655PubMedCrossRefGoogle Scholar
  46. Pfister R, Kiesel A, Melcher T (2010) Adaptive control of ideomotor effect anticipations. Acta Psychol 135:316–322CrossRefGoogle Scholar
  47. Pfister R, Kiesel A, Hoffmann J (2011) Learning at any rate: action-effect learning for stimulus-based actions. Psychol Res 75:61–65PubMedCrossRefGoogle Scholar
  48. Pfister R, Schwarz KA, Janczyk M (2012) Ubi irritatio, ibi affluxus: a 19th century perspective on haemodynamic brain activity. Cortex 48:1061–1063PubMedCrossRefGoogle Scholar
  49. Pfister R, Dignath D, Hommel B, Kunde W (2013) It takes two to imitate: anticipation and imitation in social interaction. Psychol Sci 24(10):2117–2121Google Scholar
  50. Prinz W (1990) A common coding approach to perception and action. In: Neumann O, Prinz W (eds) Relationships between perception and action. Springer, Heidelberg, pp 167–201CrossRefGoogle Scholar
  51. Prinz W (1992) Why don’t we perceive our brain states? Eur J Cogn Psychol 4:1–20CrossRefGoogle Scholar
  52. Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9:129–154CrossRefGoogle Scholar
  53. Rieger M (2007) Letters as visual action-effects in skilled typing. Acta Psychol 126:138–153CrossRefGoogle Scholar
  54. Ruge H, Krebs RM, Wolfensteller U (2012) Early markers of ongoing action-effect learning. Frontiers Psychol 3:522. doi: 10.3389/fpsyg.2012.00522 CrossRefGoogle Scholar
  55. Sanders AF (2001) How specific and common is common coding? Behav Brain Sci 24:903–905Google Scholar
  56. Shin YK, Proctor RW (2012) Testing boundary conditions of the ideomotor hypothesis using a delayed response task. Acta Psychol 141:360–372CrossRefGoogle Scholar
  57. Shin YK, Proctor RW, Capaldi EJ (2010) A review of contemporary ideomotor theory. Psychol Bull 136:943–974PubMedCrossRefGoogle Scholar
  58. Stock A, Stock C (2004) A short history of ideo-motor action. Psychol Res 68:176–188PubMedCrossRefGoogle Scholar
  59. Thorndike EL (1913) Ideo-motor action. Psychol Rev 20:91–106CrossRefGoogle Scholar
  60. Wolfensteller U, Ruge H (2011) On the timescale of stimulus-based action-effect learning. Q J Exp Psychol 64:1273–1289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roland Pfister
    • 1
  • Markus Janczyk
    • 1
  • Marcel Gressmann
    • 1
  • Lisa R. Fournier
    • 2
  • Wilfried Kunde
    • 1
  1. 1.Department of Psychology IIIJulius Maximilians University of WürzburgWürzburgGermany
  2. 2.Psychology DepartmentWashington State UniversityPullmanUSA

Personalised recommendations