Experimental Brain Research

, Volume 232, Issue 1, pp 329–336 | Cite as

Influence of removal of invisible fixation on the saccadic and manual gap effect

  • Hiroshi Ueda
  • Kohske Takahashi
  • Katsumi Watanabe
Research Article


Saccadic and manual reactions to a peripherally presented target are facilitated by removing a central fixation stimulus shortly before a target onset (the gap effect). The present study examined the effects of removal of a visible and invisible fixation point on the saccadic gap effect and the manual gap effect. Participants were required to fixate a central fixation point and respond to a peripherally presented target as quickly and accurately as possible by making a saccade (Experiment 1) or pressing a corresponding key (Experiment 2). The fixation point was dichoptically presented, and visibility was manipulated by using binocular rivalry and continuous flash suppression technique. In both saccade and key-press tasks, removing the visible fixation strongly quickened the responses. Furthermore, the invisible fixation, which remained on the display but suppressed, significantly delayed the saccadic response. Contrarily, the invisible fixation had no effect on the manual task. These results indicate that partially different processes mediate the saccadic gap effect and the manual gap effect. In particular, unconscious processes might modulate an oculomotor-specific component of the saccadic gap effect, presumably via subcortical mechanisms.


Gap effect Binocular rivalry Continuous flash suppression Saccade Manual reaction time 



This work was supported by a Grant-in-Aid for JSPS Fellows (HU) from Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for Scientific Research (23240034) from the Ministry of Education, Culture, Sports, Science and Technology (to KW).


  1. Abrams RA, Dobkin RS (1994) The gap effect and inhibition of return: interactive effects on eye movement latencies. Exp Brain Res 98:483–487PubMedCrossRefGoogle Scholar
  2. Almeida J, Mahon BZ, Nakayama K, Caramazza A (2008) Unconscious processing dissociates along categorical lines. Proc Natl Acad Sci USA 105:15214–15218. doi: 10.1073/pnas.0805867105 PubMedCrossRefGoogle Scholar
  3. Bahrami B, Vetter P, Spolaore E et al (2010) Unconscious numerical priming despite interocular suppression. Psychol Sci 21:224–233. doi: 10.1177/0956797609360664 PubMedCrossRefGoogle Scholar
  4. Bekkering H, Pratt J, Abrams RA (1996) The gap effect for eye and hand movements. Percept Psychophys 58:628–635PubMedCrossRefGoogle Scholar
  5. Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3:13–21. doi: 10.1038/nrn701 PubMedCrossRefGoogle Scholar
  6. Blake R, Ahlstrom U, Alais D (1999) Perceptual priming by invisible motion. Psychol Sci 10:145–150. doi: 10.1111/1467-9280.00122 CrossRefGoogle Scholar
  7. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436. doi: 10.1163/156856897X00357 PubMedCrossRefGoogle Scholar
  8. Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behav Res Methods Instrum Comput 34:613–617PubMedCrossRefGoogle Scholar
  9. Dorris MC, Munoz DP (1995) A neural correlate for the gap effect on saccadic reaction times in monkey. J Neurophysiol 73:2558–2562PubMedGoogle Scholar
  10. Fang F, He S (2005) Cortical responses to invisible objects in the human dorsal and ventral pathways. Nat Neurosci 8:1380–1385. doi: 10.1038/nn1537 PubMedCrossRefGoogle Scholar
  11. Fendrich R, Hughes HC, Reuter-Lorenz PA (1991) Fixation-point offsets reduce the latency of saccades to acoustic targets. Percept Psychophys 50:383–887PubMedCrossRefGoogle Scholar
  12. Fischer B, Boch R (1983) Saccadic eye movements after extremely short reaction times in the monkey. Brain Res 260:21–26PubMedCrossRefGoogle Scholar
  13. Fischer B, Breitmeyer B (1987) Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia 25:73–83PubMedCrossRefGoogle Scholar
  14. Fischer B, Ramsperger E (1984) Human express saccades: extremely short reaction times of goal directed eye movements. Exp Brain Res 57:191–195PubMedCrossRefGoogle Scholar
  15. Fischer B, Weber H (1993) Express saccades and visual attention. Behav Brain Sci 16:553–610. doi: 10.1017/S0140525X00031575 CrossRefGoogle Scholar
  16. Fischer B, Weber H, Biscaldi M et al (1993) Separate populations of visually guided saccades in humans: reaction times and amplitudes. Exp Brain Res 92:528–541PubMedCrossRefGoogle Scholar
  17. Friesen CK, Kingstone A (2003) Covert and overt orienting to gaze direction cues and the effects of fixation offset. Neuroreport 14:489–493. doi: 10.1097/01.wnr.0000058776.36017.5d PubMedCrossRefGoogle Scholar
  18. Hunt AR, Kingstone A (2003) Inhibition of return: dissociating attentional and oculomotor components. J Exp Psychol 29:1068–1074. doi: 10.1037/0096-1523.29.5.1068 Google Scholar
  19. Jiang Y, Costello P, Fang F et al (2006) A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proc Natl Acad Sci USA 103:17048–17052. doi: 10.1073/pnas.0605678103 PubMedCrossRefGoogle Scholar
  20. Jin Z, Reeves A (2009) Attentional release in the saccadic gap effect. Vis Res 49:2045–2055. doi: 10.1016/j.visres.2009.02.015 PubMedCrossRefGoogle Scholar
  21. Kalesnykas RP, Hallett PE (1987) The differentiation of visually guided and anticipatory saccades in gap and overlap paradigms. Exp Brain Res 68:115–121PubMedCrossRefGoogle Scholar
  22. Kano F, Hirata S, Call J, Tomonaga M (2011) The visual strategy specific to humans among hominids: a study using the gap-overlap paradigm. Vis Res 51:2348–2355. doi: 10.1016/j.visres.2011.09.006 PubMedCrossRefGoogle Scholar
  23. Kingstone A, Klein RM (1993) Visual offsets facilitate saccadic latency: does predisengagement of visuospatial attention mediate this gap effect? J Exp Psychol 19:1251–1265. doi: 10.1037/0096-1523.19.6.1251 Google Scholar
  24. Lin Z, He S (2009) Seeing the invisible: the scope and limits of unconscious processing in binocular rivalry. Prog Neurobiol 87:195–211. doi: 10.1016/j.pneurobio.2008.09.002 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Mackeben M, Nakayama K (1993) Express attentional shifts. Vis Res 33:85–90PubMedCrossRefGoogle Scholar
  26. Munoz DP, Wurtz RH (1992) Role of the rostral superior colliculus in active visual fixation and execution of express saccades. J Neurophysiol 67:1000–1002PubMedGoogle Scholar
  27. Munoz DP, Wurtz RH (1993) Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. J Neurophysiol 70:559–575PubMedGoogle Scholar
  28. Munoz DP, Broughton JR, Goldring JE, Armstrong IT (1998) Age-related performance of human subjects on saccadic eye movement tasks. Exp Brain Res 121:391–400PubMedCrossRefGoogle Scholar
  29. Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442. doi: 10.1163/156856897X00366 PubMedCrossRefGoogle Scholar
  30. Pessoa L (2005) To what extent are emotional visual stimuli processed without attention and awareness? Curr Opin Neurobiol 15:188–196. doi: 10.1016/j.conb.2005.03.002 PubMedCrossRefGoogle Scholar
  31. Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25Google Scholar
  32. Posner MI, Rafal RD, Choate LS, Vaughan J (1985) Inhibition of return: neural basis and function. Cogn Neuropsychol 2:211–228. doi: 10.1080/02643298508252866 CrossRefGoogle Scholar
  33. Pratt J, Bekkering H, Abrams RA, Adam J (1999) The gap effect for spatially oriented responses. Acta Psychol 102:1–12CrossRefGoogle Scholar
  34. Pratt J, Bekkering H, Leung M (2000) Estimating the components of the gap effect. Exp Brain Res 130:258–263PubMedCrossRefGoogle Scholar
  35. Pratt J, Lajonchere CM, Abrams RA (2006) Attentional modulation of the gap effect. Vis Res 46:2602–2607. doi: 10.1016/j.visres.2006.01.017 PubMedCrossRefGoogle Scholar
  36. Reuter-Lorenz PA, Hughes HC, Fendrich R (1991) The reduction of saccadic latency by prior offset of the fixation point: an analysis of the gap effect. Percept Psychophys 49:167–175PubMedCrossRefGoogle Scholar
  37. Roseboom W, Arnold DH (2011) Learning to reach for “invisible” visual input. Curr Biol 21:493–494. doi: 10.1016/j.cub.2011.05.036 CrossRefGoogle Scholar
  38. Ross LE, Ross SM (1980) Saccade latency and warning signals: stimulus onset, offset, and change as warning events. Percept Psychophys 27:251–257PubMedCrossRefGoogle Scholar
  39. Ross SM, Ross LE (1981) Saccade latency and warning signals: effects of auditory and visual stimulus onset and offset. Percept Psychophys 29:429–437PubMedCrossRefGoogle Scholar
  40. Sakuraba S, Sakai S, Yamanaka M et al (2012) Does the human dorsal stream really process a category for tools? J Neurosci 32:3949–3953. doi: 10.1523/JNEUROSCI.3973-11.2012 PubMedCrossRefGoogle Scholar
  41. Saslow MG (1967) Latency for saccadic eye movement. J Opt Soc Am 57:1024–1029. doi: 10.1364/JOSA.57.001030 PubMedCrossRefGoogle Scholar
  42. Song J-H, Nakayama K (2007) Fixation offset facilitates saccades and manual reaching for single but not multiple target displays. Exp Brain Res 177:223–232. doi: 10.1007/s00221-006-0667-4 PubMedCrossRefGoogle Scholar
  43. Souto D, Kerzel D (2009) Evidence for an attentional component in saccadic inhibition of return. Exp Brain Res 195:531–540. doi: 10.1007/s00221-009-1824-3 PubMedCrossRefGoogle Scholar
  44. Spering M, Carrasco M (2012) Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness. J Neurosci 32:7594–7601. doi: 10.1523/JNEUROSCI.0355-12.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Spering M, Pomplun M, Carrasco M (2011) Tracking without perceiving: a dissociation between eye movements and motion perception. Psychol Sci 22:216–225. doi: 10.1177/0956797610394659 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Tam WJ, Ono H (1994) Fixation disengagement and eye-movement latency. Percept Psychophys 56:251–260PubMedCrossRefGoogle Scholar
  47. Tamietto M, de Gelder B (2010) Neural bases of the non-conscious perception of emotional signals. Nat Rev Neurosci 11:697–709. doi: 10.1038/nrn2889 PubMedCrossRefGoogle Scholar
  48. Tsuchiya N, Koch C (2005) Continuous flash suppression reduces negative afterimages. Nat Neurosci 8:1096–1101. doi:  10.1038/nn1500 Google Scholar
  49. Vernet M, Yang Q, Gruselle M et al (2009) Switching between gap and overlap pro-saccades: cost or benefit? Exp Brain Res 197:49–58. doi: 10.1007/s00221-009-1887-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hiroshi Ueda
    • 1
  • Kohske Takahashi
    • 1
  • Katsumi Watanabe
    • 1
  1. 1.Research Center for Advanced Science and TechnologyThe University of TokyoMeguro-kuJapan

Personalised recommendations