Experimental Brain Research

, Volume 230, Issue 4, pp 395–406 | Cite as

Multiple conformations of 5-HT2A and 5-HT2C receptors in rat brain: an autoradiographic study with [125I](±)DOI

  • Juan F. López-Giménez
  • M. Teresa Vilaró
  • José M. Palacios
  • Guadalupe MengodEmail author


Earlier autoradiographic studies with the 5-HT2 receptor agonist [125I](±)DOI in human brain showed unexpected biphasic competition curves for various 5-HT2A antagonists. We have performed similar studies in rat brain regions with selective 5-HT2A (M100907) and 5-HT2C (SB242084) antagonists together with ketanserin and mesulergine. The effect of GTP analogues on antagonist competition was also studied. Increasing concentrations of Gpp(NH)p or GTPγS resulted in a maximal inhibition of [125I](±)DOI-specific binding of approximately 50 %. M100907 competed biphasically in all regions. In the presence of 100 μM Gpp(NH)p, M100907 still displaced biphasically the remaining [125I](±)DOI binding. Ketanserin showed biphasic curves in some regions and monophasic curves in others. In the latter, Gpp(NH)p evidenced an additional high-affinity site. SB242084 competed biphasically in brainstem nuclei and monophasically in the other regions. In most areas, SB242084 affinities were not notably altered by Gpp(NH)p. Mesulergine competed monophasically in all regions without alteration by Gpp(NH)p. These results conform with the extended ternary complex model of receptor action: receptor exists as an equilibrium of multiple conformations, i.e. ground (R), partly activated (R*) and activated G-protein-coupled (R*G) conformation/s. Thus, [125I](±)DOI would label multiple conformations of both 5-HT2A and 5-HT2C receptors in rat brain, and M100907 and ketanserin would recognise these conformations with different affinities.


Receptor autoradiography G-protein coupling Inverse agonist 





Choroid plexus






Frontal cortex


Olfactory tubercle


Facial nucleus


Dorsal motor nucleus of vagus


Hypoglossal nucleus


  1. Adlersberg M, Arango V, Hsiung S, Mann JJ, Underwood MD, Liu K, Kassir SA, Ruggiero DA, Tamir H (2000) In vitro autoradiography of serotonin 5-HT(2A/2C) receptor-activated G protein: guanosine-5′-(gamma-[(35)S]thio)triphosphate binding in rat brain. J Neurosci Res 61(6):674–685PubMedCrossRefGoogle Scholar
  2. Aloyo VJ, Salt GL, Hoffman ME, Harvey JA (1998) Agonist and antagonist binding to rabbit cortical 5-HT2A receptors: opposite effects of magnesium. Ann N Y Acad Sci 861:280PubMedCrossRefGoogle Scholar
  3. Appel NM, Mitchell WM, Garlick RK, Glennon RA, Teitler M, De Souza EB (1990) Autoradiographic characterization of (+-)-1-(2,5-dimethoxy-4-[125I] iodophenyl)-2-aminopropane ([125I]DOI) binding to 5-HT2 and 5-HT1C receptors in rat brain. J Pharmacol Exp Ther 255(2):843–857PubMedGoogle Scholar
  4. Barker EL, Westphal RS, Schmidt D, Sanders-Bush E (1994) Constitutively active 5-hydroxytryptamine 2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem 269(16):11687–11690PubMedGoogle Scholar
  5. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152PubMedCrossRefGoogle Scholar
  6. Baxter G, Kennett G, Blaney F, Blackburn T (1995) 5-HT2 receptor subtypes: a family re-united? Trends Pharmacol Sci 16(3):105–110PubMedCrossRefGoogle Scholar
  7. Berg KA, Maayani S, Goldfarb J, Clarke WP (1998) Pleiotropic behavior of 5-HT2A and 5-HT2C receptor agonists. Ann N Y Acad Sci 861:104–110PubMedCrossRefGoogle Scholar
  8. Branchek T, Adham N, Macchi M, Kao HT, Hartig PR (1990) [3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine 2 receptor. Mol Pharmacol 38(5):604–609PubMedGoogle Scholar
  9. Brea J, Castro M, Giraldo J, Lopez-Gimenez JF, Padin JF, Quintian F, Cadavid MI, Vilaro MT, Mengod G, Berg KA, Clarke WP, Vilardaga JP, Milligan G, Loza MI (2009) Evidence for distinct antagonist-revealed functional states of 5-hydroxytryptamine(2A) receptor homodimers. Mol Pharmacol 75(6):1380–1391PubMedCrossRefGoogle Scholar
  10. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387(6630):303–308PubMedCrossRefGoogle Scholar
  11. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099–3108PubMedCrossRefGoogle Scholar
  12. Egan CT, Herrick-Davis K, Teitler M (1998) Creation of a constitutively activated state of the 5-hydroxytryptamine 2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs. J Pharmacol Exp Ther 286(1):85–90PubMedGoogle Scholar
  13. Egan C, Grinde E, Dupre A, Roth BL, Hake M, Teitler M, Herrick-Davis K (2000) Agonist high and low affinity state ratios predict drug intrinsic activity and a revised ternary complex mechanism at serotonin 5-HT(2A) and 5-HT(2C) receptors. Synapse 35(2):144–150PubMedCrossRefGoogle Scholar
  14. Glennon RA, Seggel MR, Soine WH, Herrick-Davis K, Lyon RA, Titeler M (1988) [125I]-1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane: an iodinated radioligand that specifically labels the agonist high-affinity state of 5-HT2 serotonin receptors. J Med Chem 31(1):5–7PubMedCrossRefGoogle Scholar
  15. Hartman JI, Northup JK (1996) Functional reconstitution in situ of 5-hydroxytryptamine 2c (5HT2c) receptors with alphaq and inverse agonism of 5HT2c receptor antagonists. J Biol Chem 271(37):22591–22597PubMedCrossRefGoogle Scholar
  16. Hoyer D, Pazos A, Probst A, Palacios JM (1986) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376(1):97–107PubMedCrossRefGoogle Scholar
  17. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46(2):157–203PubMedGoogle Scholar
  18. Johnson MP, Hoffman AJ, Nichols DE, Mathis CA (1987) Binding to the serotonin 5-HT2 receptor by the enantiomers of 125I-DOI. Neuropharmacology 26(12):1803–1806PubMedCrossRefGoogle Scholar
  19. Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, van Giersbergen PL, McCloskey TC, Johnson MP, McCarty DR, Poirot M, Senyah Y, Siegel BW, Widmaier C (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J Pharmacol Exp Ther 277(2):968–981PubMedGoogle Scholar
  20. Kenakin T (1995) Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 16(7):232–238PubMedCrossRefGoogle Scholar
  21. Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V, Avenell KY, Stean T, Upton N, Bromidge S, Forbes IT, Brown AM, Middlemiss DN, Blackburn TP (1997) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 36(4–5):609–620PubMedCrossRefGoogle Scholar
  22. Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, Bickerdike M (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch Pharmacol 370(2):114–123PubMedCrossRefGoogle Scholar
  23. Lefkowitz RJ, Cotecchia S, Samama P, Costa T (1993) Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 14(8):303–307PubMedCrossRefGoogle Scholar
  24. Leonhardt S, Gorospe E, Hoffman BJ, Teitler M (1992) Molecular pharmacological differences in the interaction of serotonin with 5-hydroxytryptamine 1C and 5-hydroxytryptamine 2 receptors. Mol Pharmacol 42(2):328–335PubMedGoogle Scholar
  25. Lopez-Gimenez JF, Villazon M, Brea J, Loza MI, Palacios JM, Mengod G, Vilaro MT (2001) Multiple conformations of native and recombinant human 5-hydroxytryptamine(2a) receptors are labeled by agonists and discriminated by antagonists. Mol Pharmacol 60(4):690–699PubMedGoogle Scholar
  26. Lopez-Gimenez JF, Tecott LH, Palacios JM, Mengod G, Vilaro MT (2002) Serotonin 5-HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors. J Neurosci Res 67(1):69–85PubMedCrossRefGoogle Scholar
  27. Loric S, Launay JM, Colas JF, Maroteaux L (1992) New mouse 5-HT2-like receptor. Expression in brain, heart and intestine. FEBS Lett 312(2–3):203–207PubMedCrossRefGoogle Scholar
  28. McKenna DJ, Peroutka SJ (1989) Differentiation of 5-hydroxytryptamine 2 receptor subtypes using 125I-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin. J Neurosci 9(10):3482–3490PubMedGoogle Scholar
  29. McKenna DJ, Mathis CA, Shulgin AT, Sargent T III, Saavedra JM (1987) Autoradiographic localization of binding sites for 125I-DOI, a new psychotomimetic radioligand, in the rat brain. Eur J Pharmacol 137(2–3):289–290PubMedCrossRefGoogle Scholar
  30. McKenna DJ, Nazarali AJ, Hoffman AJ, Nichols DE, Mathis CA, Saavedra JM (1989) Common receptors for hallucinogens in rat brain: a comparative autoradiographic study using [125I]LSD and [125I]DOI, a new psychotomimetic radioligand. Brain Res 476(1):45–56PubMedCrossRefGoogle Scholar
  31. Nelson DL, Lucaites VL, Wainscott DB, Glennon RA (1999) Comparisons of hallucinogenic phenylisopropylamine binding affinities at cloned human 5-HT2A, -HT(2B) and 5-HT2C receptors. Naunyn Schmiedebergs Arch Pharmacol 359(1):1–6PubMedCrossRefGoogle Scholar
  32. Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346(2):205–230PubMedCrossRefGoogle Scholar
  33. Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16(3):687–699PubMedGoogle Scholar
  34. Pierce PA, Peroutka SJ (1989) Evidence for distinct 5-hydroxytryptamine 2 binding site subtypes in cortical membrane preparations. J Neurochem 52(2):656–658PubMedCrossRefGoogle Scholar
  35. Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23(1–2):163–178PubMedCrossRefGoogle Scholar
  36. Roth BL, Choudhary MS, Khan N, Uluer AZ (1997) High-affinity agonist binding is not sufficient for agonist efficacy at 5-hydroxytryptamine 2A receptors: evidence in favor of a modified ternary complex model. J Pharmacol Exp Ther 280(2):576–583PubMedGoogle Scholar
  37. Roth BL, Berry SA, Kroeze WK, Willins DL, Kristiansen K (1998) Serotonin 5-HT2A receptors: molecular biology and mechanisms of regulation. Crit Rev Neurobiol 12(4):319–338PubMedCrossRefGoogle Scholar
  38. Strange PG (1998) Three-state and two-state models. Trends Pharmacol Sci 19(3):85–86PubMedCrossRefGoogle Scholar
  39. Strange PG (1999) G-protein coupled receptors: conformations and states. Biochem Pharmacol 58(7):1081–1088PubMedCrossRefGoogle Scholar
  40. Teitler M, Leonhardt S, Weisberg EL, Hoffman BJ (1990) 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]ketanserin labeling of 5-hydroxytryptamine2 (5HT2) receptors in mammalian cells transfected with a rat 5HT2 cDNA: evidence for multiple states and not multiple 5HT2 receptor subtypes. Mol Pharmacol 38(5):594–598PubMedGoogle Scholar
  41. Waeber C, Palacios JM (1994) Binding sites for 5-hydroxytryptamine-2 receptor agonists are predominantly located in striosomes in the human basal ganglia. Brain Res Mol Brain Res 24(1–4):199–209PubMedCrossRefGoogle Scholar
  42. Westphal RS, Sanders-Bush E (1994) Reciprocal binding properties of 5-hydroxytryptamine type 2C receptor agonists and inverse agonists. Mol Pharmacol 46(5):937–942PubMedGoogle Scholar
  43. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin 1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351(3):357–373PubMedCrossRefGoogle Scholar
  44. Yadav PN, Kroeze WK, Farrell MS, Roth BL (2011) Antagonist functional selectivity: 5-HT2A serotonin receptor antagonists differentially regulate 5-HT2A receptor protein level in vivo. J Pharmacol Exp Ther 339(1):99–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan F. López-Giménez
    • 1
  • M. Teresa Vilaró
    • 3
  • José M. Palacios
    • 2
  • Guadalupe Mengod
    • 3
    Email author
  1. 1.Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC-CSIC, UC)SantanderSpain
  2. 2.Frontera BiotechnologyBarcelonaSpain
  3. 3.Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC, IDIBAPS, CIBERNED)BarcelonaSpain

Personalised recommendations