Experimental Brain Research

, Volume 228, Issue 2, pp 141–153 | Cite as

Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations

  • S. Floor Campfens
  • Alfred C. Schouten
  • Michel J. A. M. van Putten
  • Herman van der Kooij
Research Article


The applicability of corticomuscular coherence (CMC) as a connectivity measure is limited since only 40–50 % of the healthy population presents significant CMC. In this study, we applied continuous joint position perturbations to obtain a more reliable measure of connectivity in motor control. We evaluated the coherence between joint position perturbations and EEG (position-cortical coherence, PCC) and CMC. Healthy subjects performed two isotonic force tasks against the handle of a wrist manipulator. The baseline task was isometric; in the perturbed task, the handle moved continuously with small amplitude. The position perturbation signal covered frequencies between 5 and 29 Hz. In the perturbed task, all subjects had significant PCC and 86 % of the subjects had significant CMC, on both stimulus and non-stimulus frequencies. In the baseline task, CMC was present in only 45 % of the subjects, mostly on beta-band frequencies. The position perturbations during an isotonic force task elicited PCC in all subjects and elicited CMC in most subjects on both stimulus and non-stimulus frequencies. Perturbed CMC possibly arises by two separate processes: an intrinsic process, similar to the process in an unperturbed task, involving both efferent and afferent pathways; and a process related to the excitation of the afferent and efferent pathways by the perturbation. These processes cannot be separated. PCC, however, reflects connectivity via the afferent pathways only. As PCC was present in all healthy subjects, we propose this coherence as a reliable measure for connectivity in motor control via the afferent pathways.


Coherence EEG EMG Proprioception Motor control Perturbations Afferent pathways Efferent pathways 


  1. Abbruzzese G, Berardelli A, Rothwell JC, Day BL, Marsden CD (1985) Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Exp Brain Res 58(3):544–551PubMedCrossRefGoogle Scholar
  2. Amtage F, Henschel K, Schelter B, Vesper J, Timmer J, Lücking CH, Hellwig B (2009) High functional connectivity of tremor related subthalamic neurons in Parkinson’s disease. Clin Neurophysiol 120(9):1755–1761PubMedCrossRefGoogle Scholar
  3. Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17(6):649–655PubMedCrossRefGoogle Scholar
  4. Baker SN, Olivier E, Lemon RN (1997) Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. J Physiol 501(Pt 1):225–241PubMedCrossRefGoogle Scholar
  5. Boonstra TW, Breakspear M (2012) Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography. J Neurophysiol 107(3):796–807PubMedCrossRefGoogle Scholar
  6. Bortel R, Sovka P (2007) Approximation of statistical distribution of magnitude squared coherence estimated with segment overlapping. Signal Process 87(5):1100–1117CrossRefGoogle Scholar
  7. Braun C, Staudt M, Schmitt C, Preissl H, Birbaumer N, Gerloff C (2007) Crossed cortico-spinal motor control after capsular stroke. Eur J Neurosci 25(9):2935–2945PubMedCrossRefGoogle Scholar
  8. Bruns A (2004) Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J Neurosci Methods 137(2):321–332PubMedCrossRefGoogle Scholar
  9. Campfens SF, Schouten AC, van der Kooij H, van Putten MJAM (2011) P7.11 Corticomuscular system tunes to external perturbations during a motor task as revealed by corticomuscular coherence. Clin Neurophysiol 122(Suppl 1):S92Google Scholar
  10. Carter GC (1987) Coherence and time delay estimation. Proc IEEE 75:1235–1246CrossRefGoogle Scholar
  11. Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924PubMedGoogle Scholar
  12. Fang Y, Daly JJ, Sun J, Hvorat K, Fredrickson E, Pundik S, Sahgal V, Yue GH (2009) Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol 120(5):994–1002PubMedCrossRefGoogle Scholar
  13. Florin E, Gross J, Reck C, Maarouf M, Schnitzler A, Sturm V, Fink GR, Timmermann L (2010) Causality between local field potentials of the subthalamic nucleus and electromyograms of forearm muscles in Parkinson’s disease. Eur J Neurosci 31:491–498PubMedCrossRefGoogle Scholar
  14. Florin E, Gross J, Pfeifer J, Fink GR, Timmermann L (2011) Reliability of multivariate causality measures for neural data. J Neurosci Methods 198(2):344–358PubMedCrossRefGoogle Scholar
  15. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480PubMedCrossRefGoogle Scholar
  16. Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95(4):349–369PubMedCrossRefGoogle Scholar
  17. Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P (2003) Abnormal corticomuscular and intermuscular coupling in high-frequency rhythmic myoclonus. Brain 126(Pt 2):326–342PubMedCrossRefGoogle Scholar
  18. Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241(1):5–8PubMedCrossRefGoogle Scholar
  19. Herrmann CS (2001) Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp Brain Res 137:346–353. doi:10.1007/s002210100682 PubMedCrossRefGoogle Scholar
  20. Jain S, Gourab K, Schindler-Ivens S, Schmit BD (2012) EEG during pedaling: evidence for cortical control of locomotor tasks. Clin Neurophysiol. doi:10.1016/j.clinph.2012.08.021 PubMedGoogle Scholar
  21. Johnson AN, Wheaton LA, Shinohara M (2011) Attenuation of corticomuscular coherence with additional motor or non-motor task. Clin Neurophysiol 122:356–363PubMedCrossRefGoogle Scholar
  22. Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65(3):203–210PubMedCrossRefGoogle Scholar
  23. Kristeva R, Patino L, Omlor W (2007) Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage 36(3):785–792PubMedCrossRefGoogle Scholar
  24. Kristeva-Feige R, Fritsch C, Timmer J, Lücking C-H (2002) Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task. Clin Neurophysiol 113(1):124–131PubMedCrossRefGoogle Scholar
  25. Langdon AJ, Boonstra TW, Breakspear M (2011) Multi-frequency phase locking in human somatosensory cortex. Prog Biophys Mol Biol 105:58–66. doi:10.1016/j.pbiomolbio.2010.09.015 PubMedCrossRefGoogle Scholar
  26. MacKinnon CD, Verrier MC, Tatton WG (2000) Motor cortical potentials precede long-latency EMG activity evoked by imposed displacements of the human wrist. Exp Brain Res 131(4):477–490PubMedCrossRefGoogle Scholar
  27. Masakado Y, Nielsen JB (2008) Task-and phase-related changes in cortico-muscular coherence. Keio J Med 57(1):50–56PubMedCrossRefGoogle Scholar
  28. Matthews PB (1993) Interaction between short- and long-latency components of the human stretch reflex during sinusoidal stretching. J Physiol 462:503–527PubMedGoogle Scholar
  29. McClelland VM, Cvetkovic Z, Mills KR (2012) Modulation of corticomuscular coherence by peripheral stimuli. Exp Brain Res 219(2):275–292. doi:10.1007/s00221-012-3087-7 PubMedCrossRefGoogle Scholar
  30. Mendez-Balbuena I, Huethe F, Schulte-Mönting J, Leonhart R, Manjarrez E, Kristeva R (2011) Corticomuscular coherence reflects interindividual differences in the state of the corticomuscular network during low-level static and dynamic forces. Cereb Cortex 22(3):628–638PubMedCrossRefGoogle Scholar
  31. Meng F, Tong K-Y, Chan S-T, Wong W-W, Lui K-H, Tang K-W, Gao X, Gao S (2009) Cerebral plasticity after subcortical stroke as revealed by cortico-muscular coherence. IEEE Trans Neural Syst Rehabil Eng 17(3):234–243PubMedCrossRefGoogle Scholar
  32. Mima T, Simpkins N, Oluwatimilehin T, Hallett M (1999) Force level modulates human cortical oscillatory activities. Neurosci Lett 275(2):77–80PubMedCrossRefGoogle Scholar
  33. Mima T, Steger J, Schulman AE, Gerloff C, Hallett M (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol 111(2):326–337. doi:10.1016/S1388-2457(99)00229-1 PubMedCrossRefGoogle Scholar
  34. Mima T, Matsuoka T, Hallett M (2001a) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112(1):122–126PubMedCrossRefGoogle Scholar
  35. Mima T, Toma K, Koshy B, Hallett M (2001b) Coherence between cortical and muscular activities after subcortical stroke. Stroke 32(11):2597–2601PubMedCrossRefGoogle Scholar
  36. Omlor W, Patino L, Mendez-Balbuena I, Schulte-Mönting J, Kristeva R (2011) Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state. J Neurosci 31(22):8037–8045PubMedCrossRefGoogle Scholar
  37. Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112(4):713–719PubMedCrossRefGoogle Scholar
  38. Oostenveld R, Fries P, Maris E, Schoffelen J-M (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869PubMedCrossRefGoogle Scholar
  39. Perez MA, Lundbye-Jensen J, Nielsen JB (2006) Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. J Physiol 573(Pt 3):843–855PubMedCrossRefGoogle Scholar
  40. Pintelon R, Schoukens J (2001) System identification. A frequency domain approach. IEEE Press, New YorkCrossRefGoogle Scholar
  41. Pohja M, Salenius S (2003) Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. NeuroReport 14(3):321–324PubMedCrossRefGoogle Scholar
  42. Riddle CN, Baker SN (2005) Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. J Physiol 566(Pt 2):625–639PubMedCrossRefGoogle Scholar
  43. Riddle CN, Baker SN (2006) Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence. Neuroimage 33(2):618–627PubMedCrossRefGoogle Scholar
  44. Schouten AC, Campfens SF (2012) Directional coherence disentangles causality within the sensorimotor loop, but cannot open the loop. J Physiol 590(Pt 10):2529–2530; author reply 2531–2523. doi:10.1113/jphysiol.2012.228684
  45. Seiss E, Hesse CW, Drane S, Oostenveld R, Wing AM, Praamstra P (2002) Proprioception-related evoked potentials: origin and sensitivity to movement parameters. Neuroimage 17(1):461–468PubMedCrossRefGoogle Scholar
  46. Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123(6):1067–1087PubMedCrossRefGoogle Scholar
  47. Ushiyama J, Suzuki T, Masakado Y, Hase K, Kimura A, Liu M, Ushiba J (2011) Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of tibialis anterior muscle in healthy young adults. J Neurophysiol 106(3):1379–1388PubMedCrossRefGoogle Scholar
  48. van der Meer JN, Schouten AC, Bour LJ, de Vlugt E, van Rootselaar AF, van der Helm FCT, Tijssen MAJ (2010) The intermuscular 3–7 Hz drive is not affected by distal proprioceptive input in myoclonus-dystonia. Exp Brain Res 202(3):1633–1642CrossRefGoogle Scholar
  49. van Rootselaar A-F, Maurits NM, Koelman JHTM, van der Hoeven JH, Bour LJ, Leenders KL, Brown P, Tijssen MAJ (2006) Coherence analysis differentiates between cortical myoclonic tremor and essential tremor. Mov Disord 21(2):215–222PubMedCrossRefGoogle Scholar
  50. van Strien JW (1992) Classificatie van links-en rechtshandige proefpersonen. Nederlands tijdschrift voor de Psychologie 47:88–92Google Scholar
  51. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2(4):229–239PubMedCrossRefGoogle Scholar
  52. Williams ER, Baker SN (2009) Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz. J Neurosci 29(20):6616–6624PubMedCrossRefGoogle Scholar
  53. Williams ER, Soteropoulos DS, Baker SN (2009) Coherence between motor cortical activity and peripheral discontinuities during slow finger movements. J Neurophysiol 102(2):1296–1309PubMedCrossRefGoogle Scholar
  54. Witham CL, Riddle CN, Baker MR, Baker SN (2011) Contributions of descending and ascending pathways to corticomuscular coherence in humans. J Physiol 589(Pt 15):3789–3800. doi:10.1113/jphysiol.2011.211045 PubMedCrossRefGoogle Scholar
  55. Witte M, Patino L, Andrykiewicz A, Hepp-Reymond M-C, Kristeva R (2007) Modulation of human corticomuscular beta-range coherence with low-level static forces. Eur J Neurosci 26(12):3564–3570PubMedCrossRefGoogle Scholar
  56. Yang Q, Fang Y, Sun C-K, Siemionow V, Ranganathan VK, Khoshknabi D, Davis MP, Walsh D, Sahgal V, Yue GH (2009) Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res 1250:101–112PubMedCrossRefGoogle Scholar
  57. Yang Q, Siemionow V, Yao W, Sahgal V, Yue GH (2010) Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 18(2):97–106Google Scholar
  58. Yao J, Dewald JPA (2006) Cortico-muscular communication during the generation of static shoulder abduction torque in upper limb following stroke. Conf Proc IEEE Eng Med Biol Soc 1:181–184PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Floor Campfens
    • 1
    • 2
  • Alfred C. Schouten
    • 1
    • 3
  • Michel J. A. M. van Putten
    • 2
    • 4
  • Herman van der Kooij
    • 1
    • 3
  1. 1.Laboratory of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands
  2. 2.Clinical Neurophysiology Chair, MIRA Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands
  3. 3.Department of Biomechanical EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.Department of Neurology and Clinical NeurophysiologyMedisch Spectrum TwenteEnschedeThe Netherlands

Personalised recommendations