Experimental Brain Research

, Volume 226, Issue 2, pp 175–182 | Cite as

Eye position dependency of nystagmus during constant vestibular stimulation

  • Christopher J. Bockisch
  • Elham Khojasteh
  • Dominik Straumann
  • Stefan C. A. Hegemann
Research Article


Alexander’s law, the eye position dependency of nystagmus due to peripheral vestibular lesions, has been hypothesized to occur due to adaptive changes in the brainstem velocity-to-position neural integrator in response to non-reciprocal vestibular stimulation. We investigated whether it develops during passive head rotations that produce constant nystagmus for >35 s. The yaw rotation stimulus consisted of a 1-s acceleration (100°/s2), followed by a lower acceleration ramp (starting at 7.3°/s2 and increasing at 0.04°/s2/s) until 400°/s was reached after 38 s. This stimulus was designed to offset the ~15 s vestibular ocular reflex time constant (and the 150 s adaptation time constant) and produce constant velocity slow phases. In contrast to peripheral lesions, this vestibular stimulation is the result of real head turns and has the push–pull characteristics of natural movements. The procedure was successful, as the average velocity of 31°/s was unchanged over the final 35 s of the acceleration period. In all 10 healthy human subjects, we found a large and stable Alexander’s law, with an average velocity-versus-position slope of −0.366 in the first half that was not significantly different in the second half, −0.347. These slopes correspond to integrator time constants of <3 s, are much less than normal time constants (~25 s), and are similar to those observed in patients with peripheral vestibular lesions. Alexander’s law also developed, on average, in 10 s. We conclude that Alexander’s law is not simply a consequence of non-reciprocal vestibular stimulation.


VOR Nystagmus Vestibular Adaptation Alexander’s law 



We would like to thank Beckey Trihn for collecting data on preliminary experiments and Marco Penner for technical support. This study was financially supported by the Swiss National Science Foundation, the Betty and David Koetser Foundation for Brain Research, Zurich, Switzerland, and the Center of Integrative Human Physiology, University of Zurich, Switzerland. E. Khojasteh receives the FQRNT postdoctoral scholarship from Quebec, Canada.

Supplementary material

221_2013_3423_MOESM1_ESM.pdf (171 kb)
Supplementary material 1 (PDF 171 kb)


  1. Alexander G (1912) Die Ohrenkrankheiten im Kindesalter. In: Schlossmann A (ed) Handbuch der Kinderheilkunde. Vogel, Leipzig, pp 84–96Google Scholar
  2. Anagnostou E, Heimberger J, Sklavos S, Anastasopoulos D (2011) Alexander’s law during high-acceleration head rotations in humans. NeuroReport 22:239–243. doi: 10.1097/WNR.0b013e3283451769 PubMedCrossRefGoogle Scholar
  3. Anastasopoulos D, Anagnostou E (2012) Invariance of vestibulo-ocular reflex gain to head impulses in pitch at different initial eye-in-orbit elevations: implications for Alexander’s law. Acta Otolaryngol 132:1066–1072. doi: 10.3109/00016489.2012.682120 PubMedCrossRefGoogle Scholar
  4. Bockisch CJ, Hegemann S (2008) Alexander’s law and the oculomotor neural integrator: three-dimensional eye velocity in patients with an acute vestibular asymmetry. J Neurophysiol 100:3105–3116PubMedCrossRefGoogle Scholar
  5. Bockisch CJ, Khojasteh E, Straumann D, Hegemann S (2012) Development of eye position dependency of slow phase velocity during caloric stimulation. PLoS ONE 7:e51409. doi: 10.1371/journal.pone.0051409 PubMedCrossRefGoogle Scholar
  6. Boumans LJ, Rodenburg M, Maas AJ (1983) Response of the human vestibulo-ocular reflex system to constant angular acceleration. II. Experimental investigation. ORL J Otorhinolaryngol Relat Spec 45:130–142PubMedCrossRefGoogle Scholar
  7. Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1383–1409PubMedGoogle Scholar
  8. Cheron G, Godaux E (1987) Disabling of the oculomotor neural integrator by kainic acid injections in the prepositus-vestibular complex of the cat. J Physiol 394:267–290PubMedGoogle Scholar
  9. Crawford JD (1994) The oculomotor neural integrator uses a behavior-related coordinate system. J Neurosci 14:6911–6923PubMedGoogle Scholar
  10. Crawford JD, Vilis T (1993) Modularity and parallel processing in the oculomotor integrator. Exp Brain Res 96:443–456PubMedCrossRefGoogle Scholar
  11. Crawford JD, Cadera W, Vilis T (1991) Generation of torsional and vertical eye position signals by the interstitial nucleus of Cajal. Science 252:1551–1553PubMedCrossRefGoogle Scholar
  12. Doslak MJ, Dell’ Osso LF, Daroff RB (1979) A model of Alexander’s law of vestibular nystagmus. Biol Cybern 34:181–186PubMedCrossRefGoogle Scholar
  13. Doslak MJ, Dell’Osso LF, Daroff RB (1982) Alexander’s law: a model and resulting study. Ann Otol Rhinol Laryngol 91:316–322PubMedGoogle Scholar
  14. Farshadmanesh F, Klier EM, Chang P, Wang H, Crawford JD (2007) Three-dimensional eye-head coordination after injection of muscimol into the interstitial nucleus of Cajal (INC). J Neurophysiol 97:2322–2338PubMedCrossRefGoogle Scholar
  15. Furman JM, Hain TC, Paige GD (1989) Central adaptation models of the vestibulo-ocular and optokinetic systems. Biol Cybern 61:255–264PubMedCrossRefGoogle Scholar
  16. Glasauer S (2006) Cerebellar contribution to saccades and gaze holding: a modeling approach. Ann N Y Acad Sci 1004:206–219CrossRefGoogle Scholar
  17. Hegemann S, Straumann D, Bockisch C (2007) Alexander’s law in patients with acute vestibular tone asymmetry—evidence for multiple horizontal neural integrators. J Assoc Res Otolaryngol 8:551–561. doi: 10.1007/s10162-007-0095-6 PubMedCrossRefGoogle Scholar
  18. Helmchen C, Rambold H, Fuhry L, Buttner U (1998) Deficits in vertical and torsional eye movements after uni- and bilateral muscimol inactivation of the interstitial nucleus of Cajal of the alert monkey. Exp Brain Res 119:436–452PubMedCrossRefGoogle Scholar
  19. Hess K (1982) Do peripheral-vestibular lesions in man affect the position integrator of the eyes? Neurosci Lett Suppl 10:242–243Google Scholar
  20. Jeffcoat B, Shelukhin A, Fong A, Mustain W, Zhou W (2008) Alexander’s law revisited. J Neurophysiol 100:154–159PubMedCrossRefGoogle Scholar
  21. Khojasteh E, Bockisch CJ, Straumann D, Hegemann SCA (2012) A dynamic model for eye-position-dependence of spontaneous nystagmus in acute unilateral vestibular deficit. Eur J Neurosci. doi: 10.1111/ejn.12030
  22. King WM, Fuchs AF, Magnin M (1981) Vertical eye movement-related responses of neurons in midbrain near intestinal nucleus of Cajal. J Neurophysiol 46:549–562PubMedGoogle Scholar
  23. Kleinbaum DG, Kupper LL, Muller KE (1988) Applied regression analysis and other multivariable methods. PWS-Kent Publishing Company, BostonGoogle Scholar
  24. Laurens J, Angelaki DE (2011) The functional significance of velocity storage and its dependence on gravity. Exp Brain Res 210:407–422. doi: 10.1007/s00221-011-2568-4 PubMedCrossRefGoogle Scholar
  25. Leigh RJ, Robinson DA, Zee DS (1981) A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic-vestibular system. Ann N Y Acad Sci 374:619–635PubMedCrossRefGoogle Scholar
  26. Marti S, Bockisch CJ, Straumann D (2005) Prolonged asymmetric smooth-pursuit stimulation leads to downbeat nystagmus in healthy human subjects. Invest Opththalmol Vis Sci 46:143–149Google Scholar
  27. McConville K, Tomlinson RD, King WM, Paige G, Na EQ (1994) Eye position signals in the vestibular nuclei: consequences for models of integrator function. J Vestib Res 4:391–400PubMedGoogle Scholar
  28. McFarland JL, Fuchs AF (1992) Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J Neurophysiol 68:319–332PubMedGoogle Scholar
  29. Optican LM, Zee DS (1984) A hypothetical explanation of congenital nystagmus. Biol Cybern 50:119–134PubMedCrossRefGoogle Scholar
  30. Ris L, Godaux E (1998) Spike discharge regularity of vestibular neurons in labyrinthectomized guinea pigs. Neurosci Lett 253:131–134PubMedCrossRefGoogle Scholar
  31. Robinson DA, Zee DS, Hain TC, Holmes A, Rosenberg LF (1984) Alexander’s law: its behavior and origin in the human vestibulo-ocular reflex. Ann Neurol 16:714–722PubMedCrossRefGoogle Scholar
  32. Smith PF, Curthoys IS (1989) Mechanisms of recovery following unilateral labyrinthectomy: a review. Brain Res Brain Res Rev 14:155–180Google Scholar
  33. Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72:213–224. doi: 10.1016/0006-8993(74)90860-9 PubMedCrossRefGoogle Scholar
  34. Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50:9–33PubMedCrossRefGoogle Scholar
  35. Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899PubMedGoogle Scholar
  36. Zhou W, Mustain W, Simpson I (2004) Sound-evoked vestibulo-ocular reflexes (VOR) in trained monkeys. Exp Brain Res 156:129–134. doi: 10.1007/s00221-003-1778-9 PubMedCrossRefGoogle Scholar
  37. Zhou W, Xu Y, Simpson I, Cai Y (2007) Multiplicative computation in the vestibulo-ocular reflex (VOR). J Neurophysiol 2780–2789Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christopher J. Bockisch
    • 1
    • 2
    • 3
    • 4
  • Elham Khojasteh
    • 3
  • Dominik Straumann
    • 1
    • 4
  • Stefan C. A. Hegemann
    • 3
    • 4
  1. 1.Department of NeurologyUniversity Hospital ZürichZurichSwitzerland
  2. 2.Department of OphthalmologyUniversity Hospital ZürichZurichSwitzerland
  3. 3.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital ZürichZurichSwitzerland
  4. 4.Zürich Centre for Integrative Human Physiology (ZIHP)University Hospital Zürich, University of ZürichZurichSwitzerland

Personalised recommendations