Experimental Brain Research

, Volume 226, Issue 2, pp 153–163 | Cite as

Time-dependent modulation of AMPA receptor phosphorylation and mRNA expression of NMDA receptors and glial glutamate transporters in the rat hippocampus and cerebral cortex in a pilocarpine model of epilepsy

  • Mark William Lopes
  • Flávia Mahatma Schneider Soares
  • Nelson de Mello
  • Jean Costa Nunes
  • Aurilene Gomes Cajado
  • Daniel de Brito
  • Fabiano Mendes de Cordova
  • Rodrigo Maranguape Silva da Cunha
  • Roger Walz
  • Rodrigo Bainy Leal
Research Article


The pilocarpine model in rodents reproduces the main features of mesial temporal lobe epilepsy related to hippocampus sclerosis (MTLE-HS) in humans. It has been demonstrated in this model that the phosphorylation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR1 subunit is increased 1 h after pilocarpine treatment. Moreover, alterations in the levels of glutamate transporters have been associated with chronic epilepsy in humans. Despite these studies, the profile of these changes has not yet been addressed. We analyzed the protein content and phosphorylation profile of the AMPA receptor GluR1 subunit by western blotting. We also used quantitative real-time polymerase chain reaction to analyze the expression of glial glutamate transporters and the N-methyl-d-aspartate receptor NR1 subunit in the hippocampus (Hip) and cerebral cortex (Ctx) at different time points after pilocarpine-induced status epilepticus (Pilo-SE) in male adult Wistar rats. Biochemical analysis was performed in the Hip and Ctx at 1, 3, 12 h (acute period), 5 days (latent period), and 50 days (chronic period) after Pilo-SE. Key findings include an increase in the phosphorylation of GluR1-Ser845 in the Ctx and GluR1-Ser831 in the Hip at different times during the acute period, and a decrease in the total content of the GluR1 subunit in the Ctx in the latent period. There was a down-regulation of the mRNA expression and protein levels of EAAT1 and EAAT2, and a decrease of the NR1 mRNA expression, in the Ctx during the latent period. Notably, during the chronic period, the EAAT2 mRNA expression and protein levels decreased while the NR1 mRNA levels increased in the Hip. Taken together, our findings suggest a time- and structure-dependent imbalance of glutamatergic transmission in response to Pilo-SE, which might be associated with either epileptogenesis or the seizure threshold in MTLE-HS.


Epilepsy Pilocarpine Signal transduction AMPA and NMDA receptors EAATs 



This work was supported by the National Council for Scientific and Technological Development (CNPq) Brazil; Coordination for the Training and Improvement of Higher Education Personnel (CAPES); Santa Catarina Research Foundation (FAPESC/PRONEX Program-NENASC project), INCT-National Institute of Science and Technology for Excitotoxicity and Neuroprotection and IBN.Net/CNPq. R.B.L. and R.W. are recipients of CNPq fellowships.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Babb TL (1999) Synaptic reorganizations in human and rat hippocampal epilepsy. Adv Neurol 79:763–779PubMedGoogle Scholar
  2. Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF (2000) Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 20(1):89–102PubMedGoogle Scholar
  3. Beart PM, O’Shea RD (2007) Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150(1):5–17PubMedCrossRefGoogle Scholar
  4. Bernabeu R, Izquierdo I, Cammarota M, Jerusalinsky D, Medina JH (1995) Learning-specific, time-dependent increase in [3H]phorbol dibutyrate binding to protein kinase C in selected regions of the rat brain. Brain Res 685(1–2):163–168PubMedCrossRefGoogle Scholar
  5. Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA 94(13):7041–7046PubMedCrossRefGoogle Scholar
  6. Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51(2):213–225PubMedCrossRefGoogle Scholar
  7. Bonan CD, Walz R, Pereira GS, Worm PV, Battastini AM, Cavalheiro EA, Izquierdo I, Sarkis JJ (2000) Changes in synaptosomal ectonucleotidase activities in two rat models of temporal lobe epilepsy. Epilepsy Res 39(3):229–238PubMedCrossRefGoogle Scholar
  8. Bracey JM, Kurz JE, Low B, Churn SB (2009) Prolonged seizure activity leads to increased Protein Kinase A activation in the rat pilocarpine model of status epilepticus. Brain Res 1283:167–176PubMedCrossRefGoogle Scholar
  9. Calloni GW, Penno CA, Cordova FM, Trentin AG, Neto VM, Leal RB (2005) Congenital hypothyroidism alters the phosphorylation of ERK1/2 and p38MAPK in the hippocampus of neonatal rats. Brain Res Dev Brain Res 154(1):141–145PubMedCrossRefGoogle Scholar
  10. Cammarota M, Bernabeu R, Levi De Stein M, Izquierdo I, Medina JH (1998) Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur J Neurosci 10(8):2669–2676PubMedCrossRefGoogle Scholar
  11. Cavalheiro EA, Leite JP, Bortolotto ZA, Turski WA, Ikonomidou C, Turski L (1991) Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32(6):778–782PubMedCrossRefGoogle Scholar
  12. Cavalheiro EA, Fernandes MJ, Turski L, Naffah-Mazzacoratti MG (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35(1):1–11PubMedCrossRefGoogle Scholar
  13. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159PubMedCrossRefGoogle Scholar
  14. Cordova FM, Rodrigues AL, Giacomelli MB, Oliveira CS, Posser T, Dunkley PR, Leal RB (2004) Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats. Brain Res 998(1):65–72PubMedCrossRefGoogle Scholar
  15. Costa MS, Rocha JB, Perosa SR, Cavalheiro EA, Naffah-Mazzacoratti MdaG (2004) Pilocarpine-induced status epilepticus increases glutamate release in rat hippocampal synaptosomes. Neurosci Lett 356(1):41–44PubMedCrossRefGoogle Scholar
  16. Di Maio R, Mastroberardino PG, Hu X, Montero L, Greenamyre JT (2011) Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol Dis 42(3):482–495PubMedCrossRefGoogle Scholar
  17. Dias RB, Ribeiro JA, Sebastiao AM (2012) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors. Hippocampus 22(2):276–291PubMedCrossRefGoogle Scholar
  18. Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R (2003) PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci 6(2):136–143PubMedCrossRefGoogle Scholar
  19. Figueiredo CP, Antunes VL, Moreira EL, de Mello N, Medeiros R, Di Giunta G, Lobao-Soares B, Linhares M, Lin K, Mazzuco TL, Prediger RD, Walz R (2011) Glucose-dependent insulinotropic peptide receptor expression in the hippocampus and neocortex of mesial temporal lobe epilepsy patients and rats undergoing pilocarpine induced status epilepticus. Peptides 32(4):781–789PubMedCrossRefGoogle Scholar
  20. Hediger MA (1999) Glutamate transporters in kidney and brain. Am J Physiol 277(4 Pt 2):F487–F492PubMedGoogle Scholar
  21. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA—gated glutamate receptor channels depends on subunit composition. Science 252(5007):851–853PubMedCrossRefGoogle Scholar
  22. Houser CR, Huang CS, Peng Z (2008) Dynamic seizure-related changes in extracellular signal-regulated kinase activation in a mouse model of temporal lobe epilepsy. Neuroscience 156(1):222–237PubMedCrossRefGoogle Scholar
  23. Jerusalinsky D, Ferreira MB, Walz R, Da Silva RC, Bianchin M, Ruschel AC, Zanatta MS, Medina JH, Izquierdo I (1992) Amnesia by post-training infusion of glutamate receptor antagonists into the amygdala, hippocampus, and entorhinal cortex. Behav Neural Biol 58(1):76–80PubMedCrossRefGoogle Scholar
  24. Leal RB, Cordova FM, Herd L, Bobrovskaya L, Dunkley PR (2002) Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol 178(1):44–51PubMedCrossRefGoogle Scholar
  25. Lee A, Pow DV (2010) Astrocytes: glutamate transport and alternate splicing of transporters. Int J Biochem Cell Biol 42(12):1901–1906PubMedCrossRefGoogle Scholar
  26. Lee HK, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21(5):1151–1162PubMedCrossRefGoogle Scholar
  27. Lee HK, Takamiya K, Han JS, Man H, Kim CH, Rumbaugh G, Yu S, Ding L, He C, Petralia RS, Wenthold RJ, Gallagher M, Huganir RL (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112(5):631–643PubMedCrossRefGoogle Scholar
  28. Lee HK, Takamiya K, He K, Song L, Huganir RL (2010) Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. J Neurophysiol 103(1):479–489PubMedCrossRefGoogle Scholar
  29. Leite JP, Neder L, Arisi GM, Carlotti CG Jr, Assirati JA, Moreira JE (2005) Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia 46(Suppl 5):134–141PubMedCrossRefGoogle Scholar
  30. Li Y, Peng Z, Xiao B, Houser CR (2010) Activation of ERK by spontaneous seizures in neural progenitors of the dentate gyrus in a mouse model of epilepsy. Exp Neurol 224(1):133–145PubMedCrossRefGoogle Scholar
  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRefGoogle Scholar
  32. Lopes MW, Soares FM, de Mello N, Nunes JC, de Cordova FM, Walz R, Leal RB (2012) Time-dependent modulation of mitogen activated protein kinases and AKT in rat hippocampus and cortex in the pilocarpine model of epilepsy. Neurochem Res 37(9):1868–1878PubMedCrossRefGoogle Scholar
  33. Mello LE, Cavalheiro EA, Tan AM, Kupfer WR, Pretorius JK, Babb TL, Finch DM (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34(6):985–995PubMedCrossRefGoogle Scholar
  34. Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369(6480):486–488PubMedCrossRefGoogle Scholar
  35. Oh MC, Derkach VA, Guire ES, Soderling TR (2006) Extrasynaptic membrane trafficking regulated by GluR1 serine 845 phosphorylation primes AMPA receptors for long-term potentiation. J Biol Chem 281(2):752–758PubMedCrossRefGoogle Scholar
  36. Oliveira CS, Rigon AP, Leal RB, Rossi FM (2008) The activation of ERK1/2 and p38 mitogen-activated protein kinases is dynamically regulated in the developing rat visual system. Int J Dev Neurosci 26(3–4):355–362PubMedCrossRefGoogle Scholar
  37. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356PubMedCrossRefGoogle Scholar
  38. Posser T, de Aguiar CB, Garcez RC, Rossi FM, Oliveira CS, Trentin AG, Neto VM, Leal RB (2007) Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38(MAPK) and JNK1/2 but not of ERK1/2. Arch Toxicol 81(6):407–414PubMedCrossRefGoogle Scholar
  39. Quillfeldt JA, Schmitz PK, Walz R, Bianchin M, Zanatta MS, Medina JH, Izquierdo I (1994) CNQX infused into entorhinal cortex blocks memory expression, and AMPA reverses the effect. Pharmacol Biochem Behav 48(2):437–440PubMedCrossRefGoogle Scholar
  40. Rakhade SN, Loeb JA (2008) Focal reduction of neuronal glutamate transporters in human neocortical epilepsy. Epilepsia 49(2):226–236PubMedCrossRefGoogle Scholar
  41. Rakhade SN, Zhou C, Aujla PK, Fishman R, Sucher NJ, Jensen FE (2008) Early alterations of AMPA receptors mediate synaptic potentiation induced by neonatal seizures. J Neurosci 28(32):7979–7990PubMedCrossRefGoogle Scholar
  42. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675–686PubMedCrossRefGoogle Scholar
  43. Sander JW (2003) The epidemiology of epilepsy revisited. Curr Opin Neurol 16(2):165–170PubMedCrossRefGoogle Scholar
  44. Sanderson JL, Dell’Acqua ML (2011) AKAP signaling complexes in regulation of excitatory synaptic plasticity. Neuroscientist 17(3):321–336PubMedCrossRefGoogle Scholar
  45. Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317PubMedCrossRefGoogle Scholar
  46. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702PubMedCrossRefGoogle Scholar
  47. Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183PubMedCrossRefGoogle Scholar
  48. Walz R, Roesler R, Quevedo J, Sant’Anna MK, Madruga M, Rodrigues C, Gottfried C, Medina JH, Izquierdo I (2000) Time-dependent impairment of inhibitory avoidance retention in rats by posttraining infusion of a mitogen-activated protein kinase kinase inhibitor into cortical and limbic structures. Neurobiol Learn Mem 73(1):11–20PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mark William Lopes
    • 1
  • Flávia Mahatma Schneider Soares
    • 2
  • Nelson de Mello
    • 2
  • Jean Costa Nunes
    • 2
  • Aurilene Gomes Cajado
    • 3
  • Daniel de Brito
    • 3
  • Fabiano Mendes de Cordova
    • 1
    • 4
  • Rodrigo Maranguape Silva da Cunha
    • 3
  • Roger Walz
    • 2
    • 5
  • Rodrigo Bainy Leal
    • 1
  1. 1.Departamento de Bioquímica, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Centro de Neurociências Aplicadas (CeNAp), HUUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Centro de Ciências Agrárias e BiológicasUniversidade Estadual Vale do AcaraúFortalezaBrazil
  4. 4.Escola de Medicina Veterinária e ZootecniaUniversidade Federal do TocantinsAraguaínaBrazil
  5. 5.Departamento de Clínica Médica, Hospital Universitário (HU), Centro de Ciências da SaúdeUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations