Experimental Brain Research

, Volume 225, Issue 3, pp 361–375 | Cite as

Simultaneous reconstruction of continuous hand movements from primary motor and posterior parietal cortex

  • Benjamin A. Philip
  • Naveen Rao
  • John P. Donoghue
Research Article

Abstract

Primary motor cortex (MI) and parietal area PE both participate in cortical control of reaching actions, but few studies have been able to directly compare the form of kinematic encoding in the two areas simultaneously during hand tracking movements. To directly compare kinematic coding properties in these two areas under identical behavioral conditions, we recorded simultaneously from two chronically implanted multielectrode arrays in areas MI and PE (or areas 2/5) during performance of a continuous manual tracking task. Monkeys manually pursued a continuously moving target that followed a series of straight-line movement segments, arranged in a sequence where the direction (but not length) of the upcoming segment varied unpredictably as each new segment appeared. Based on recordings from populations of MI (31–143 units) and PE (22–87 units), we compared hand position and velocity reconstructions based on linear filters. We successfully reconstructed hand position and velocity from area PE (mean r 2 = 0.751 for position reconstruction, r 2 = 0.614 for velocity), demonstrating trajectory reconstruction from each area. Combing these populations provided no reconstruction improvements, suggesting that kinematic representations in MI and PE encode overlapping hand movement information, rather than complementary or unique representations. These overlapping representations may reflect the areas’ common engagement in a sensorimotor feedback loop for error signals and movement goals, as required by a task with continuous, time-evolving demands and feedback. The similarity of information in both areas suggests that either area might provide a suitable target to obtain control signals for brain computer interface applications.

Keywords

Primary motor cortex Posterior parietal cortex Trajectory reconstruction Population decoding 

Notes

Acknowledgments

This work was supported by grant R01 NS025074-21A1 from the National Institute of Neurological Disorders and Stroke. In memory of John Mislow M.D., who led the surgical procedures.

Conflict of interest

The authors declare no conflict of interest.

References

  1. Archambault PS, Caminiti R, Battaglia-Mayer A (2009) Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. Cereb Cortex. doi: 10.1093/cercor/bhp058 PubMedGoogle Scholar
  2. Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cereb Cortex 4:590–600PubMedCrossRefGoogle Scholar
  3. Averbeck BB, Chafee MV, Crowe DA, Georgopoulos AP (2005) Parietal representation of hand velocity in a copy task. J Neurophysiol 93:508–518. doi: 10.1152/jn.00357.2004 PubMedCrossRefGoogle Scholar
  4. Bansal AK, Truccolo W, Vargas-Irwin CE, Donoghue JP (2011) Decoding 3-D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity and local field potentials. J neurophysiol. doi: 10.1152/jn.00781.2011 Google Scholar
  5. Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606. doi: 10.1016/j.neuropsychologia.2005.10.011 PubMedCrossRefGoogle Scholar
  6. Burnod Y, Baraduc P, Battaglia-Mayer A, Guigon E, Koechlin E, Ferraina S, Lacquaniti F, Caminiti R (1999) Parieto-frontal coding of reaching: an integrated framework. Exp Brain Res 129:325–346PubMedCrossRefGoogle Scholar
  7. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS et al (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol 1:E42. doi: 10.1371/journal.pbio.0000042 PubMedCrossRefGoogle Scholar
  8. Carmena JM, Lebedev MA, Henriquez CS, Nicolelis MAL (2005) Stable ensemble performance with single-neuron variability during reaching movements in primates. J Neurosci 25:10712–10716. doi: 10.1523/JNEUROSCI.2772-05.2005 PubMedCrossRefGoogle Scholar
  9. Dushanova J, Donoghue JP (2010) Neurons in primary motor cortex engaged during action observation. Eur J Neurosci 32:386–398. doi: 10.1111/j.1460-9568.2009.07067.x CrossRefGoogle Scholar
  10. Evangeliou MN, Raos V, Galletti C, Savaki HE (2009) Functional imaging of the parietal cortex during action execution and observation. Cereb Cortex 19:624–639. doi: papers://9ECEC99B-FEEC-4808-A2E1-EB1DC6D0033D/Paper/p370 PubMedCrossRefGoogle Scholar
  11. Gail A, Andersen RA (2006) Neural dynamics in monkey parietal reach region reflect context-specific sensorimotor transformations. J Neurosci 26:9376–9384. doi: 10.1523/JNEUROSCI.1570-06.2006 PubMedCrossRefGoogle Scholar
  12. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537PubMedGoogle Scholar
  13. Graziano MSA, Taylor CSR, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851PubMedCrossRefGoogle Scholar
  14. Hatsopoulos N, Joshi J, O’Leary JG (2004) Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J Neurophysiol 92:1165–1174. doi: 10.1152/jn.01245.2003 PubMedCrossRefGoogle Scholar
  15. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171. doi: 10.1038/nature04970 PubMedCrossRefGoogle Scholar
  16. Johnson PB, Ferraina S, Caminiti R (1993) Cortical networks for visual reaching. Exp Brain Res 97:361–365PubMedCrossRefGoogle Scholar
  17. Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science (New York, NY) 285:2136–2139CrossRefGoogle Scholar
  18. Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science (New York, NY) 255:1517–1523CrossRefGoogle Scholar
  19. Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51:247–260PubMedCrossRefGoogle Scholar
  20. Kalaska JF, Cohen DA, Prud’homme M, Hyde ML (1990) Parietal area 5 neuronal activity encodes movement kinematics, not movement dynamics. Exp Brain Res 80:351–364PubMedCrossRefGoogle Scholar
  21. Lee D, Port NL, Kruse W, Georgopoulos AP (1998) Variability and correlated noise in the discharge of neurons in motor and parietal areas of the primate cortex. J Neurosci 18:1161–1170PubMedGoogle Scholar
  22. Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Mot Behav 25:203–216Google Scholar
  23. Moran DW, Schwartz AB (1999) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82:2693–2704Google Scholar
  24. Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42:223–227PubMedCrossRefGoogle Scholar
  25. Mulliken GH, Musallam S, Andersen RA (2008a) Decoding trajectories from posterior parietal cortex ensembles. J Neurosci 28:12913–12926. doi: 10.1523/JNEUROSCI.1463-08.2008 PubMedCrossRefGoogle Scholar
  26. Mulliken GH, Musallam S, Andersen RA (2008b) Forward estimation of movement state in posterior parietal cortex. Proc Natl Acad Sci USA 105:8170–8177. doi: 10.1073/pnas.0802602105 PubMedCrossRefGoogle Scholar
  27. Pandya DN, Seltzer B (1982) Association areas of the cerebral cortex. Trends Neurosci 5:386–390CrossRefGoogle Scholar
  28. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515–532. doi: 10.1152/jn.00587.2002 PubMedCrossRefGoogle Scholar
  29. Quian Quiroga R, Snyder LH, Batista AP, Cui H, Andersen RA (2006) Movement intention is better predicted than attention in the posterior parietal cortex. J Neurosci 26:3615–3620. doi: 10.1523/JNEUROSCI.3468-05.2006 PubMedCrossRefGoogle Scholar
  30. Sanes JN, Donoghue JP (2000) Plasticity and primary motor cortex. Annu Rev Neurosci 23:393–415. doi: 10.1146/annurev.neuro.23.1.393 PubMedCrossRefGoogle Scholar
  31. Schwartz A (1993) Motor cortical activity during drawing movements: population representation during sinusoid tracing. J Neurophysiol 70:28–36PubMedGoogle Scholar
  32. Scott SH (1999) Apparatus for measuring and perturbing shoulder and elbow joint positions and torques during reaching. J Neurosci Methods 89:119–127PubMedCrossRefGoogle Scholar
  33. Seal J, Gross C, Bioulac B (1982) Activity of neurons in area 5 during a simple arm movement in monkeys before and after deafferentation of the trained limb. Brain Res 250:229–243PubMedCrossRefGoogle Scholar
  34. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416:141–142. doi: 10.1038/416141a PubMedCrossRefGoogle Scholar
  35. Shadmehr R, Krakauer J (2008) A computational neuroanatomy for motor control. Exp Brain Res 185:359–381. doi: 10.1007/s00221-008-1280-5 PubMedCrossRefGoogle Scholar
  36. Strick PL, Kim CC (1978) Input to primate motor cortex from posterior parietal cortex (area 5). I Demonstration by retrograde transport. Brain Res 157:325–330PubMedCrossRefGoogle Scholar
  37. Taylor DM, Tillery SIH, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science (New York, NY) 296:1829–1832. doi: 10.1126/science.1070291 CrossRefGoogle Scholar
  38. Tkach D, Reimer J, Hatsopoulos NG (2007) Congruent activity during action and action observation in motor cortex. J Neurosci 27:13241–13250. doi: 10.1523/JNEUROSCI.2895-07.2007 PubMedCrossRefGoogle Scholar
  39. Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511. doi: 10.1038/nn1430 PubMedGoogle Scholar
  40. Vargas-Irwin C, Donoghue JP (2007) Automated spike sorting using density grid contour clustering and subtractive waveform decomposition. J Neurosci Methods 164:1–18. doi: 10.1016/j.jneumeth.2007.03.025 PubMedCrossRefGoogle Scholar
  41. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101. doi: 10.1038/nature06996 PubMedCrossRefGoogle Scholar
  42. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs SJ et al (2000) Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–365. doi: 10.1038/35042582 PubMedCrossRefGoogle Scholar
  43. Wu W, Black MJ, Gao Y, Bienenstock E, Serruya M, Shaikhouni A, Donoghue JP (2003) Neural decoding of cursor motion using a Kalman filter. Adv Neural Inf Process Syst 133–140Google Scholar
  44. Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ (2006) Bayesian population decoding of motor cortical activity using a kalman filter. Neural Comput 18:80–118. doi: 10.1162/089976606774841585 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benjamin A. Philip
    • 1
    • 3
  • Naveen Rao
    • 1
  • John P. Donoghue
    • 1
    • 2
  1. 1.Department of NeuroscienceBrown UniversityProvidenceUSA
  2. 2.Brown Institute for Brain ScienceBrown UniversityProvidenceUSA
  3. 3.University of MissouriColumbiaUSA

Personalised recommendations