Experimental Brain Research

, Volume 225, Issue 2, pp 187–196

The impacts of coordinative exercise on executive function in kindergarten children: an ERP study

  • Yu-Kai Chang
  • Yu-Jung Tsai
  • Tai-Ting Chen
  • Tsung-Min Hung
Research Article

Abstract

This study examined the behavioral and neuroelectrical impacts of a coordinative exercise intervention with different exercise intensities on executive function in kindergarten children. Participants underwent the Eriksen flanker test before and after an exercise program that involved 35-min sessions twice per week for 8 weeks, with either low or moderate intensity. Our findings revealed that exercise intervention, regardless of intensity, resulted in shorter reaction times and higher response accuracy in both congruent and incongruent trials, with incongruent trials receiving a larger benefit from exercise compared with congruent trials. Additionally, neuroelectrical activation demonstrated greater P3 amplitude and shorter P3 latency following exercise in both trials. These results suggest that coordinative exercise may specifically benefit prefrontal-dependent tasks in the immature brain state of kindergarten children by increasing the allocation of attentional resources and enhancing the efficiency of neurocognitive processing.

Keywords

Executive control Fitness Inhibition P3 Physical activity 

References

  1. Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS, Glover GH, Reiss AL (2002) A developmental fMRI study of the Stroop color-word task. Neuroimage 16:61–75. doi:10.1006/nimg.2001.1046 PubMedCrossRefGoogle Scholar
  2. American College of Sports Medicine (2010) ACSM’s guidelines for exercise testing and prescription. Lippincott Williams and Wilkins, New YorkGoogle Scholar
  3. Amso D, Casey BJ (2006) Beyond what develops when. Curr Dir Psychol Sci 15:24–29CrossRefGoogle Scholar
  4. Best JR (2010) Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev Rev 30:331–351PubMedCrossRefGoogle Scholar
  5. Best JR, Miller PH (2010) A developmental perspective on executive function. Child Dev 81:1641–1660PubMedCrossRefGoogle Scholar
  6. Budde H, Voelcker-Rehage C, Pietrabyk-Kendziorra S, Ribeiro P, Tidow G (2008) Acute coordinative exercise improves attentional performance in adolescents. Neurosci Lett 441:219–223. doi:10.1016/j.neulet.2008.06.024 PubMedCrossRefGoogle Scholar
  7. Chaddock L, Erickson KI, Prakash RS et al (2010a) A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res 1358:172–183. doi:10.1016/j.brainres.2010.08.049 PubMedCrossRefGoogle Scholar
  8. Chaddock L, Erickson KI, Prakash RS et al (2010b) Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev Neurosci 32:249–256. doi:10.1159/000316648 PubMedCrossRefGoogle Scholar
  9. Chang YK, Ku PW, Tomporowski PD, Chen FT, Huang CC (2012a) The effects of acute resistance exercise on late-middle-aged adults’ goal planning. Med Sci Sports Exerc 44:1773–1779. doi:10.1249/MSS.0b013e3182574e0b PubMedCrossRefGoogle Scholar
  10. Chang YK, Nien YH, Tasi CL, Etnier JL (2010) Physical activity and cognition in older adults: The potential of Tai Chi Chuan. J Aging Phys Act 18:451–472PubMedGoogle Scholar
  11. Chang YK, Pan CY, Chen FT, Tsai CL, Huang CC (2012b) Effect of resistance exercise training on cognitive function in healthy older adults: a review. J Aging Phys Act 20:497–516PubMedGoogle Scholar
  12. Colcombe SJ, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130PubMedCrossRefGoogle Scholar
  13. Davis CL, Tomporowski PD, Boyle CA, Waller JL, Miller PH, Naglieri JA, Gregoski M (2007) Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res Q Exerc Sport 78:510–519PubMedGoogle Scholar
  14. Davis CL, Tomporowski PD, McDowell JE et al (2011) Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol 30:91–98. doi:10.1037/a0021766 PubMedCrossRefGoogle Scholar
  15. Diamond A, Lee K (2011) Interventions shown to aid executive function development in children 4 to 12 years old. Science 333:959–964. doi:10.1126/science.1204529 PubMedCrossRefGoogle Scholar
  16. Egan CD, Verheul MH, Savelsbergh GJ (2007) Effects of experience on the coordination of internally and externally timed soccer kicks. J Mot Behav 39:423–432. doi:10.3200/JMBR.39.5.423-432 PubMedCrossRefGoogle Scholar
  17. Erickson KI, Prakash RS, Voss MW et al (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039. doi:10.1002/hipo.20547 PubMedCrossRefGoogle Scholar
  18. Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Atten Percept Psychophys 16:143–149CrossRefGoogle Scholar
  19. Etnier JL, Chang YK (2009) The effect of physical activity on executive function: a brief commentary on definitions, measurement issues, and the current state of the literature. J Sport Exerc Psychol 31:469–483PubMedGoogle Scholar
  20. Giedd JN (2004) Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 1021:77–85PubMedCrossRefGoogle Scholar
  21. Gogtay N, Giedd JN, Lusk L et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101:8174–8179PubMedCrossRefGoogle Scholar
  22. Hillman CH, Buck SM, Themanson JR, Pontifex MB, Castelli DM (2009a) Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children. Dev Psychol 45:114–129PubMedCrossRefGoogle Scholar
  23. Hillman CH, Castelli DM, Buck SM (2005) Aerobic fitness and neurocognitive function in healthy preadolescent children. Med Sci Sports Exerc 37:1967–1974. doi:10.1249/01.mss.0000176680.79702.ce PubMedCrossRefGoogle Scholar
  24. Hillman CH, Erickson KI, Kramer AF (2008) Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 9:58–65. doi:10.1038/nrn2298 PubMedCrossRefGoogle Scholar
  25. Hillman CH, Pontifex MB, Raine LB, Castelli DM, Hall EE, Kramer AF (2009b) The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159:1044–1054. doi:10.1016/j.neuroscience.2009.01.057 PubMedCrossRefGoogle Scholar
  26. Hotting K, Reich B, Holzschneider K et al (2012) Differential cognitive effects of cycling versus stretching/coordination training in middle-aged adults. Health Psychol 31:145–155. doi:10.1037/a0025371 PubMedCrossRefGoogle Scholar
  27. Kamijo K, Hayashi Y, Sakai T, Yahiro T, Tanaka K, Nishihira Y (2009) Acute effects of aerobic exercise on cognitive function in older adults. J Gerontol Ser B Psychol Sci Soc Sci 64:356–363. doi:10.1093/geronb/gbp030 CrossRefGoogle Scholar
  28. Kamijo K, Nishihira Y, Higashiura T, Kuroiwa K (2007) The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int J Psychophysiol 65:114–121. doi:10.1016/j.ijpsycho.2007.04.001 PubMedCrossRefGoogle Scholar
  29. Kwok TCY, Lam K, Wong P et al (2011) Effectiveness of coordination exercise in improving cognitive function in older adults: a prospective study. Clin Interv Aging 6:261PubMedGoogle Scholar
  30. Manolopoulos E, Papadopoulos C, Kellis E (2006) Effects of combined strength and kick coordination training on soccer kick biomechanics in amateur players. Scand J Med Sci Sports 16:102–110. doi:10.1111/j.1600-0838.2005.00447.x PubMedCrossRefGoogle Scholar
  31. Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn Psychol 41:49–100. doi:10.1006/cogp.1999.0734 PubMedCrossRefGoogle Scholar
  32. Newell KM (1985) Coordination, control and skill. In: Goodman D, Wilberg R, Franks I (eds) Differing perspectives in motor learning, memory and control. Elsevier Science Publishing Company, INC, Amsterdam, pp 295–317Google Scholar
  33. O’ Hare ED, Sowell ER (2008) Imaging developmental changes in gray and white matter in the human brain. In: Nelson CA, Luciana M (eds) Handbook of developmental cognitive neuroscience, 2nd edn. MIT Press, Cambridge, MA, pp 23–38Google Scholar
  34. Planinsec J (2002) Relations between the motor and cognitive dimensions of preschool girls and boys. Percept Mot Skills 94:415–423PubMedCrossRefGoogle Scholar
  35. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. doi:10.1016/j.clinph.2007.04.019 PubMedCrossRefGoogle Scholar
  36. Pontifex MB, Raine LB, Johnson CR et al (2011) Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J Cogn Neurosci 23:1332–1345PubMedCrossRefGoogle Scholar
  37. Semlitsch H, Anderer P, Schuster P, Presslich O (1986) A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology 23:695–703PubMedCrossRefGoogle Scholar
  38. Sibley BA, Etnier JL (2003) The relationship between physical activity and cognition in children: a meta-analysis. Pediatr Exerc Sci 15:243–256Google Scholar
  39. Smith PJ, Blumenthal JA, Hoffman BM et al (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72:239–252. doi:10.1097/PSY.0b013e3181d14633 PubMedCrossRefGoogle Scholar
  40. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW (2003) Mapping cortical change across the human life span. Nat Neurosci 6:309–315PubMedCrossRefGoogle Scholar
  41. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24:8223–8231. doi:10.1523/JNEUROSCI.1798-04.2004 PubMedCrossRefGoogle Scholar
  42. Stroth S, Kubesch S, Dieterle K, Ruchsow M, Heim R, Kiefer M (2009) Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res 1269:114–124. doi:10.1016/j.brainres.2009.02.073 PubMedCrossRefGoogle Scholar
  43. Themanson JR, Hillman CH (2006) Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience 141:757–767. doi:10.1016/j.neuroscience.2006.04.004 PubMedCrossRefGoogle Scholar
  44. Tomporowski PD, Davis CL, Miller P, Naglieri J (2008) Exercise and children’s intelligence, cognition, and academic achievement. Educ Psychol Rev 20:111–131. doi:10.1007/s10648-007-9057-0 PubMedCrossRefGoogle Scholar
  45. Uhrich TA, Swalm RL (2007) A pilot study of a possible effect from a motor task on reading performance. Percept Mot Skills 104:1035–1041PubMedCrossRefGoogle Scholar
  46. Voss MW, Kramer AF, Basak C, Prakash RS, Roberts B (2010) Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl Cogn Psychol 24:812–826CrossRefGoogle Scholar
  47. Weinstein AM, Voss MW, Prakash RS et al (2012) The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav Immun 26:811–819. doi:10.1016/j.bbi.2011.11.008 PubMedCrossRefGoogle Scholar
  48. Wu CT, Pontifex MB, Raine LB, Chaddock L, Voss MW, Kramer AF, Hillman CH (2011) Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology 25:333–343PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yu-Kai Chang
    • 1
  • Yu-Jung Tsai
    • 2
  • Tai-Ting Chen
    • 2
  • Tsung-Min Hung
    • 2
  1. 1.Graduate Institute of Athletics and Coaching ScienceNational Taiwan Sport UniversityTaoyuanTaiwan
  2. 2.Department of Physical EducationNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations