Advertisement

Experimental Brain Research

, Volume 225, Issue 1, pp 105–117 | Cite as

Virtual reality for assessment of patients suffering chronic pain: a case study

  • Joan Llobera
  • Mar González-Franco
  • Daniel Perez-Marcos
  • Josep Valls-Solé
  • Mel Slater
  • Maria V. Sanchez-Vives
Research Article

Abstract

The study of body representation and ownership has been a very active research area in recent years. Synchronous multisensory stimulation has been used for the induction of the illusion of ownership over virtual body parts and even full bodies, and it has provided experimental paradigms for the understanding of the brain processing of body representation. However, the illusion of ownership of a virtual body has rarely been used for patient evaluation and diagnosis. Here we propose a method that exploits ownership of a virtual body in combination with a simple brain computer interface (BCI) and basic physiological measures to complement neurological assessment. A male patient presenting a fixed posture dystonia featuring a permanently closed left fist participated in this case study. The patient saw a virtual body that substituted his own after donning a head-mounted display and thereby entering the virtual reality. The left virtual hand had the same posture as his corresponding real hand. After inducing virtual hand ownership by correlated visuo-tactile stimulation and dynamic reflections in a virtual mirror, the virtual hand would open either automatically or through a cognitive task assessed through a BCI that required him to focus attention on the virtual hand. The results reveal that body ownership induced changes on electromyography and BCI performance in the patient that were different from those in five healthy controls. Overall, the case study shows that the induction of virtual body ownership combined with simple electrophysiological measures could be useful for the diagnosis of patients with neurological conditions.

Keywords

Body ownership Immersive virtual reality Pain Assessment 

Notes

Acknowledgments

We would like to acknowledge Pere Sivecas for his help during the experiment. JLL work was funded by the “Fundació de la Marató de TV3” project 71531 to MS. MG-F was supported by the FI-DGR grant from the Catalan Government (CUR-Gencat) cofounded by the European Social Found (EC-ESF). This work was also funded by the “Fundació de la Marató de TV3” project 110930 to JV-S, and by European Union FP7 Integrated Project BEAMING (248620) to MS and MS-V. MS is also supported by an ERC grant TRAVERSE (#227985).

References

  1. Adamovich SV, Fluet GG, Tunik E, Merians AS (2009) Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25(1):29–44. doi: 10.3233/nre-2009-0497 PubMedGoogle Scholar
  2. Blanke O (2012) Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci 13(8). doi:http://dx.doi.org/10.1038/nrn3292
  3. Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419(6904):269–270. doi: 10.1038/419269a PubMedCrossRefGoogle Scholar
  4. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391(6669):756. doi: 10.1038/35784 PubMedCrossRefGoogle Scholar
  5. Brütsch K, Schuler T, Koenig A, Zimmerli L, Koeneke SM, Lünenburger L, Riener R, Jäncke L, Meyer-Heim A (2010) Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. J Neuroeng Rehabil 7:15. doi: 10.1186/1743-0003-7-15 PubMedCrossRefGoogle Scholar
  6. Edwards M, Alonso-Canovas A, Schrag A, Bloem B, Thompson P, Bhatia K (2011) Limb amputations in fixed dystonia: a form of body integrity identity disorder? Mov Disord 26(8):1410–1414. doi: 10.1002/mds.23671 PubMedCrossRefGoogle Scholar
  7. Ehrsson HH (2007) The experimental induction of out-of-body experiences. Science 317(5841):1048. doi: 10.1126/science.1142175 PubMedCrossRefGoogle Scholar
  8. Ehrsson H, Spence C, Passingham RE (2004) That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305(5685):875–877. doi: 10.1126/science.1097011 PubMedCrossRefGoogle Scholar
  9. George L, Lotte F, Abad RV, Lécuyer A (2011) Using scalp electrical biosignals to control an object by concentration and relaxation tasks: design and evaluation. Annu Int Conf IEEE Eng Med Biol Soc 2011:6299–6302. doi: 10.1109/iembs.2011.6091554 Google Scholar
  10. Gevins AS, Zeitlin GM, Doyle JC, Schaffer RE, Callaway E (1979) EEG patterns during ‘cognitive’ tasks. II. Analysis of controlled tasks. Electroencephalogr Clin Neurophysiol 47(6):704–710. doi: 10.1016/0013-4694(79)90297-9 PubMedCrossRefGoogle Scholar
  11. Gillies M, Spanlang B (2010) Comparing and evaluating real-time character engines for virtual environments. Presence Teleoper Virtual Environ 19(2):95–117CrossRefGoogle Scholar
  12. González-Franco M, Pérez-Marcos D, Spanlang B, Slater M (2010) The contribution of real-time mirror reflections of motor actions on virtual body ownership in an immersive virtual environment. In: IEEE virtual reality conference, 2010. IEEE, pp 111–114Google Scholar
  13. Hänsel A, Lenggenhager B, von Känel R, Curatolo M, Blanke O (2011) Seeing and identifying with a virtual body decreases pain perception. Eur J Pain 15(8):874–879. doi: 10.1016/j.ejpain.2011.03.013 PubMedCrossRefGoogle Scholar
  14. He P, Wilson G, Russell C (2004) Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med Biol Eng Comput 42(3):407–412. doi: 10.1007/bf02344717 Google Scholar
  15. Hoffman HG, Doctor JN, Patterson DR, Carrougher GJ, Furness TA (2000a) Virtual reality as an adjunctive pain control during burn wound care in adolescent patients. Pain 85(1–2):305–309PubMedCrossRefGoogle Scholar
  16. Hoffman HG, Patterson DR, Carrougher GJ (2000b) Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: a controlled study. Clin J Pain 16(3):244–250PubMedCrossRefGoogle Scholar
  17. Kalckert A, Ehrsson HH (2012) Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front Hum Neurosci 6(March):40. doi: 10.3389/fnhum.2012.00040 PubMedGoogle Scholar
  18. Lenggenhager B, Tadi T, Metzinger T, Blanke O (2007) Video ergo sum: manipulating bodily self-consciousness. Science 317(5841):1096–1099. doi: 10.1126/science.1143439 PubMedCrossRefGoogle Scholar
  19. Lin TA, John LR (2006) Quantifying mental relaxation with EEG for use in computer games. In: International conference on internet computing, 2006, pp 409–415Google Scholar
  20. Mercier C, Sirigu A (2009) Training with virtual visual feedback to alleviate phantom limb pain. Neurorehabil Neural Repair 23(6):587–594. doi: 10.1177/1545968308328717 PubMedCrossRefGoogle Scholar
  21. Moseley GL, Olthof N, Venema A, Don S, Wijers M, Gallace A, Spence C (2008) Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proc Natl Acad Sci USA 105(35):13169–13173. doi: 10.1073/pnas.0803768105 PubMedCrossRefGoogle Scholar
  22. Murray CD, Pettifer S, Howard T (2007) The treatment of phantom limb pain using immersive virtual reality: three case studies. Disabil Rehabil 29(18):1465–1469PubMedCrossRefGoogle Scholar
  23. Neuper C, Pfurtscheller G (2010) Neurofeedback training for BCI control. In: Brain-computer interfaces. The frontiers collection. Springer, Berlin, Heidelberg, pp 65–78. doi: 10.1007/978-3-642-02091-9
  24. Newport R, Pearce R, Preston C (2010) Fake hands in action: embodiment and control of supernumerary limbs. Exp Brain Res 204(3):385–395. doi: 10.1007/s00221-009-2104-y PubMedCrossRefGoogle Scholar
  25. Perez-Marcos D, Slater M, Sanchez-Vives MV (2009) Inducing a virtual hand ownership illusion through a brain–computer interface. NeuroReport 20(6):589–594. doi: 10.1097/WNR.0b013e32832a0a2a PubMedCrossRefGoogle Scholar
  26. Petkova VI, Ehrsson HH (2008) If I were you: perceptual illusion of body swapping. PLoS ONE 3(12):e3832. doi: 10.1371/journal.pone.0003832 PubMedCrossRefGoogle Scholar
  27. Pfurtscheller G (1989) Spatiotemporal analysis of alpha frequency components with the ERD technique. Brain Topogr 2(1–2):3–8PubMedCrossRefGoogle Scholar
  28. Ramachandran VS, Rogers-Ramachandran D, Cobb S (1995) Touching the phantom limb. Nature 377(6549):489–490. doi: 10.1038/377489a0 PubMedCrossRefGoogle Scholar
  29. Ray W, Cole H (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228(4700):750–752. doi: 10.1126/science.3992243 PubMedCrossRefGoogle Scholar
  30. Rizzo AA, Buckwalter JG (1997) The status of virtual reality for the cognitive rehabilitation of persons with neurological disorders and acquired brain injury. Stud Health Technol Inform 39:22–33PubMedGoogle Scholar
  31. Rizzo AS, Kim GJ (2005) A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence Teleoper Virtual Environ 14(2):119–146. doi: 10.1162/1054746053967094 CrossRefGoogle Scholar
  32. Sanchez-Vives MV, Spanlang B, Frisoli A, Bergamasco M, Slater M (2010) Virtual hand illusion induced by visuomotor correlations. PLoS ONE 5(4):e10381. doi: 10.1371/journal.pone.0010381 PubMedCrossRefGoogle Scholar
  33. Sato K, Fukumori S, Matsusaki T, Maruo T, Ishikawa S, Nishie H, Takata K, Mizuhara H, Mizobuchi S, Nakatsuka H, Matsumi M, Gofuku A, Yokoyama M, Morita K (2010) Nonimmersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: an open-label pilot study. Pain Med 11(4):622–629. doi: 10.1111/j.1526-4637.2010.00819.x PubMedCrossRefGoogle Scholar
  34. Schrag A, Trimble M, Quinn N, Bhatia K (2004) The syndrome of fixed dystonia: an evaluation of 103 patients. Brain J Neurol 127(10):2360–2372. doi: 10.1093/brain/awh262 CrossRefGoogle Scholar
  35. Shaw JC (1996) Intention as a component of the alpha-rhythm response to mental activity. Int J Psychophysiol 24(1–2):7–23PubMedCrossRefGoogle Scholar
  36. Slater M, Perez-Marcos D, Ehrsson HH, Sanchez-Vives MV (2008) Towards a digital body: the virtual arm illusion. Front Hum Neurosci 2(6). doi: 10.3389/neuro.09.006.2008
  37. Slater M, Perez-Marcos D, Ehrsson HH, Sanchez-Vives MV (2009) Inducing illusory ownership of a virtual body. Front Neurosci 3(2):214. doi: 10.3389/neuro.01.029.2008 PubMedCrossRefGoogle Scholar
  38. Slater M, Spanlang B, Sanchez-Vives M, Blanke O (2010) First person experience of body transfer in virtual reality. PLoS ONE 5(5):e10564. doi: 10.1371/journal.pone.0010564 PubMedCrossRefGoogle Scholar
  39. Sveistrup H (2004) Motor rehabilitation using virtual reality. J Neuroeng Rehabil 1(1):10. doi: 10.1186/1743-0003-1-10 PubMedCrossRefGoogle Scholar
  40. Taylor RM, Hudson TC, Seeger A, Weber H, Juliano J, Helser AT (2001) VRPN: a device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM symposium on virtual reality software and technology, New York, NY, USA. ACM Press, pp 55–61. doi: 10.1145/505008.505019
  41. Tecchia F, Carrozzino M, Bacinelli S, Rossi F, Vercelli D, Marino G, Gasparello P, Bergamasco M (2010) A flexible framework for wide-spectrum vr development. Presence Teleoper Virtual Environ 19(4):302–312CrossRefGoogle Scholar
  42. Tsakiris M, Hesse MD, Boy C, Haggard P, Fink GR (2007) Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb Cortex (New York, NY: 1991) 17(10):2235–2244. doi: 10.1093/cercor/bhl131

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joan Llobera
    • 1
  • Mar González-Franco
    • 1
  • Daniel Perez-Marcos
    • 2
  • Josep Valls-Solé
    • 2
    • 3
  • Mel Slater
    • 1
    • 4
  • Maria V. Sanchez-Vives
    • 2
    • 4
    • 5
  1. 1.EVENT LabUniversity of BarcelonaBarcelonaSpain
  2. 2.IDIBAPS Institut d Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
  3. 3.Department of Neurology, Hospital ClínicUniversity of BarcelonaBarcelonaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  5. 5.Departament de Psicologia BàsicaUniversity of BarcelonaBarcelonaSpain

Personalised recommendations