Experimental Brain Research

, Volume 224, Issue 2, pp 155–164 | Cite as

Effect of anesthesia and cerebral blood flow on neuronal injury in a rat middle cerebral artery occlusion (MCAO) model

  • C. Bleilevens
  • A. B. Roehl
  • A. Goetzenich
  • N. Zoremba
  • M. Kipp
  • J. Dang
  • R. Tolba
  • R. Rossaint
  • M. Hein
Research Article


Middle cerebral artery occlusion (MCAO) models have become well established as the most suitable way to simulate stroke in experimental studies. The high variability in the size of the resulting infarct due to filament composition, rodent strain and vessel anatomy makes the setup of such models very complex. Beside controllable variables of homeostasis, the choice of anesthetics and the grade of ischemia and reperfusion played a major role for extent of neurological injury. Transient MCAO was induced during either isoflurane or ketamine/xylazine (ket/xyl) anesthesia with simultaneously measurement of cerebral blood flow (CBF) in 60 male Wistar rats (380–420 g). Neurological injury was quantified after 24 h. Isoflurane compared with ket/xyl improved mortality 24 h after MCAO (10 vs. 50 %, p = 0.037) and predominantly led to striatal infarcts (78 vs. 18 %, p = 0.009) without involvement of the neocortex and medial caudoputamen. Independent of anesthesia type, cortical infarcts could be predicted with a sensitivity of 67 % and a specificity of 100 % if CBF did not exceed 35 % of the baseline value during ischemia. In all other cases, cortical infarcts developed if the reperfusion values remained below 50 %. Hyperemia during reperfusion significantly increased infarct and edema volumes. The cause of frequent striatal infarcts after isoflurane anesthesia might be attributed to an improved CBF during ischemia (46 ± 15 % vs. 35 ± 19 %, p = 0.04). S-100β release, edema volume and upregulation of IL-6 and IL-1β expression were impeded by isoflurane. Thus, anesthetic management as well as the grade of ischemia and reperfusion after transient MCAO demonstrated important effects on neurological injury.


Neuroprotection Isoflurane Cerebral perfusion Middle cerebral artery occlusion model 



The authors would like to thank Renate Nadenau and Christian Beckers for the technical assistance.


  1. Ayata C, Dunn AK, Gursoy-OZdemir Y, Huang Z, Boas DA, Moskowitz MA (2004) Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 24:744–755PubMedCrossRefGoogle Scholar
  2. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622 (discussion 1623)PubMedCrossRefGoogle Scholar
  3. Beyersdorf F (2009) The use of controlled reperfusion strategies in cardiac surgery to minimize ischaemia/reperfusion damage. Cardiovasc Res 83:262–268PubMedCrossRefGoogle Scholar
  4. Bouley J, Fisher M, Henninger N (2007) Comparison between coated vs. uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging. Neurosci Lett 412:185–190PubMedCrossRefGoogle Scholar
  5. Brint S, Jacewicz M, Kiessling M, Tanabe J, Pulsinelli W (1988) Focal brain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood Flow Metab 8:474–485PubMedCrossRefGoogle Scholar
  6. Coyle P, Jokelainen PT (1982) Dorsal cerebral arterial collaterals of the rat. Anat Rec 203:397–404PubMedCrossRefGoogle Scholar
  7. Dang J, Mitkari B, Kipp M, Beyer C (2011) Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav Immun 25:715–726PubMedCrossRefGoogle Scholar
  8. Denes A, Ferenczi S, Kovacs KJ (2011) Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood- brain barrier damage and brain oedema independently of infarct size. J Neuroinflammation 8:164PubMedCrossRefGoogle Scholar
  9. Elango C, Devaraj SN (2010) Immunomodulatory effect of Hawthorn extract in an experimental stroke model. J Neuroinflammation 7:97PubMedCrossRefGoogle Scholar
  10. Emsley HCA, Smith CJ, Tyrrell PJ, Hopkins SJ (2008) Inflammation in acute ischemic stroke and its relevance to stroke critical care. Neurocrit Care 9:125–138PubMedCrossRefGoogle Scholar
  11. Engelhorn T, Doerfler A, Forsting M, Heusch G, Schulz R (2005) Does a relative perfusion measure predict cerebral infarct size? AJNR Am J Neuroradiol 26:2218–2223PubMedGoogle Scholar
  12. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH (2009) Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 40:2244–2250PubMedCrossRefGoogle Scholar
  13. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634PubMedCrossRefGoogle Scholar
  14. Gerriets T, Stolz E, Walberer M et al (2004) Complications and pitfalls in rat stroke models for middle cerebral artery occlusion: a comparison between the suture and the macrosphere model using magnetic resonance angiography. Stroke 35:2372–2377PubMedCrossRefGoogle Scholar
  15. Hossmann K (2009) Pathophysiological basis of translational stroke research. Folia Neuropathol 47:213–227PubMedGoogle Scholar
  16. Jolkkonen J, Puurunen K, Koistinaho J, Kauppinen R, Haapalinna A, Nieminen L, Sivenius J (1999) Neuroprotection by the alpha2-adrenoceptor agonist, dexmedetomidine, in rat focal cerebral ischemia. Eur J Pharmacol 372:31–36PubMedCrossRefGoogle Scholar
  17. Kapinya KJ, Lowl D, Futterer C, Maurer M, Waschke KF, Isaev NK, Dirnagl U (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898PubMedCrossRefGoogle Scholar
  18. Kirkeby OJ, Rise IR, Nordsletten L, Skjeldal S, Hall C, Risöe C (1995) Cerebral blood flow measured with intracerebral laser-Dopplerflow probes and radioactive microspheres. J Appl Physiol 79:1479–1486PubMedGoogle Scholar
  19. Kohrs R, Durieux ME (1998) Ketamine: teaching an old drug new tricks. Anesth Analg 87:1186–1193PubMedGoogle Scholar
  20. Kramer M, Dang J, Baertling F et al (2010) TTC staining of damaged brain areas after MCA occlusion in the rat does not constrict quantitative gene and protein analyses. J Neurosci Methods 187:84–89PubMedCrossRefGoogle Scholar
  21. Kuge Y, Minematsu K, Yamaguchi T, Miyake Y (1995) Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke 26:1655–1657PubMedCrossRefGoogle Scholar
  22. Kuraoka M, Furuta T, Matsuwaki T, Omatsu T, Ishii Y, Kyuwa S, Yoshikawa Y (2009) Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp Anim 58:19–29PubMedCrossRefGoogle Scholar
  23. Laing RJ, Jakubowski J, Laing RW (1993) Middle cerebral artery occlusion without craniectomy in rats. Which method works best? Stroke 24:294–297PubMedCrossRefGoogle Scholar
  24. Li L, Zuo Z (2009) Isoflurane preconditioning improves short-term and long-term neurological outcome after focal brain ischemia in adult rats. Neuroscience 164:497–506PubMedCrossRefGoogle Scholar
  25. Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion. J Neurosci Methods 179:1–8PubMedCrossRefGoogle Scholar
  26. Livnat A, Barbiro-Michaely E, Mayevsky A (2010) Mitochondrial function and cerebral blood flow variable responses to middle cerebral artery occlusion. J Neurosci Methods 188:76–82PubMedCrossRefGoogle Scholar
  27. Luh C, Gierth K, Timaru-Kast R, Engelhard K, Werner C, Thal SC (2011) Influence of a brief episode of anesthesia during the induction of experimental brain trauma on secondary brain damage and inflammation. PLoS ONE 6:e19948PubMedCrossRefGoogle Scholar
  28. Maekawa T, Tommasino C, Shapiro HM, Keifer-Goodman J, Kohlenberger RW (1986) Local cerebral blood flow and glucose utilization during isoflurane anesthesia in the rat. Anesthesiology 65:144–151PubMedCrossRefGoogle Scholar
  29. Memezawa H, Minamisawa H, Smith ML, Siesjo BK (1992) Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89:67–78PubMedCrossRefGoogle Scholar
  30. Munakata H, Okada K, Hasegawa T, Hino Y, Kano H, Matsumori M, Okita Y (2010) Controlled low-flow reperfusion after warm brain ischemia reduces reperfusion injury in canine model. Perfusion 25:159–168PubMedCrossRefGoogle Scholar
  31. Nellgard B, Mackensen GB, Massey G, Pearlstein RD, Warner DS (2000) The effects of anesthetics on stress responses to forebrain ischemia and reperfusion in the rat. Anesth Analg 91:145–151PubMedCrossRefGoogle Scholar
  32. Nemergut EC (2009) Ketamine: still learning its secrets after 45 years. J Neurosurg Pediatr 4:37–38PubMedCrossRefGoogle Scholar
  33. Oliff HS, Coyle P, Weber E (1997) Rat strain and vendor differences in collateral anastomoses. J Cereb Blood Flow Metab 17:571–576PubMedCrossRefGoogle Scholar
  34. Ozden S, Isenmann S (2004) Neuroprotective properties of different anesthetics on axotomized rat retinal ganglion cells in vivo. J Neurotrauma 21:73–82PubMedCrossRefGoogle Scholar
  35. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, LondonGoogle Scholar
  36. Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205PubMedCrossRefGoogle Scholar
  37. Pettigrew LC, Kindy MS, Scheff S, Springer JE, Kryscio RJ, Li Y, Grass DS (2008) Focal cerebral ischemia in the TNFalpha-transgenic rat. J Neuroinflammation 5:47PubMedCrossRefGoogle Scholar
  38. Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL (1999) Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci 64:1099–1108PubMedCrossRefGoogle Scholar
  39. Prieto R, Carceller F, Roda JM, Avendano C (2005) The intraluminal thread model revisited: rat strain differences in local cerebral blood flow. Neurol Res 27:47–52PubMedCrossRefGoogle Scholar
  40. Proescholdt M, Heimann A, Kempski O (2001) Neuroprotection of S(+) ketamine isomer in global forebrain ischemia. Brain Res 904:245–251PubMedCrossRefGoogle Scholar
  41. Ryang Y, Dang J, Kipp M et al (2011) Solulin reduces infarct volume and regulates gene-expression in transient middle cerebral artery occlusion in rats. BMC Neurosci 12:113PubMedCrossRefGoogle Scholar
  42. Sagher O, Huang D, Keep RF (2003) Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats. J Neurosurg 99:131–137PubMedCrossRefGoogle Scholar
  43. Salom JB, Orti M, Centeno JM, Torregrosa G, Alborch E (2000) Reduction of infarct size by the NO donors sodium nitroprusside and spermine/NO after transient focal cerebral ischemia in rats. Brain Res 865:149–156PubMedCrossRefGoogle Scholar
  44. Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29:2162–2170PubMedCrossRefGoogle Scholar
  45. Shimamura N, Matchett G, Tsubokawa T, Ohkuma H, Zhang J (2006) Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods 156:161–165PubMedCrossRefGoogle Scholar
  46. Takagi K, Zhao W, Busto R, Ginsberg MD (1995) Local hemodynamic changes during transient middle cerebral artery occlusion and recirculation in the rat: a [14C]iodoantipyrine autoradiographic study. Brain Res 691:160–168PubMedCrossRefGoogle Scholar
  47. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60PubMedCrossRefGoogle Scholar
  48. Walberer M, Stolz E, Muller C et al (2006) Experimental stroke: ischaemic lesion volume and oedema formation differ among rat strains (a comparison between Wistar and Sprague-Dawley rats using MRI). Lab Anim 40:1–8PubMedCrossRefGoogle Scholar
  49. Warner DS, Zhou JG, Ramani R, Todd MM (1991) Reversible focal ischemia in the rat: effects of halothane, isoflurane, and methohexital anesthesia. J Cereb Blood Flow Metab 11:794–802PubMedCrossRefGoogle Scholar
  50. Woitzik J, Schilling L (2002) Control of completeness and immediate detection of bleeding by a single laser-Doppler flow probe during intravascular middle cerebral artery occlusion in rats. J Neurosci Methods 122:75–78PubMedCrossRefGoogle Scholar
  51. Xu X, Zhang S, Yan W, Li X, Zhang H, Zheng X (2006) Development of cerebral infarction, apoptotic cell death and expression of X-chromosome-linked inhibitor of apoptosis protein following focal cerebral ischemia in rats. Life Sci 78:704–712PubMedCrossRefGoogle Scholar
  52. Zausinger S, Baethmann A, Schmid-Elsaesser R (2002) Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia: mechanical ventilation is required to obtain controlled experimental conditions. Brain Res Brain Res Protoc 9:112–121PubMedCrossRefGoogle Scholar
  53. Zhao H, Mayhan WG, Sun H (2008) A modified suture technique produces consistent cerebral infarction in rats. Brain Res 1246:158–166PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Bleilevens
    • 1
  • A. B. Roehl
    • 1
  • A. Goetzenich
    • 2
  • N. Zoremba
    • 1
  • M. Kipp
    • 3
  • J. Dang
    • 3
  • R. Tolba
    • 4
  • R. Rossaint
    • 1
  • M. Hein
    • 1
  1. 1.Department of AnesthesiologyUniversity Hospital AachenAachenGermany
  2. 2.Department of Cardiothoracic SurgeryUniversity Hospital AachenAachenGermany
  3. 3.Institute of NeuroanatomyRWTH Aachen UniversityAachenGermany
  4. 4.Institute for Laboratory Animal ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations