Advertisement

Experimental Brain Research

, Volume 224, Issue 1, pp 125–139 | Cite as

Persistent impairments in hippocampal, dorsal striatal, and prefrontal cortical function following repeated photoperiod shifts in rats

  • Erin L. ZelinskiEmail author
  • Amanda V. Tyndall
  • Nancy S. Hong
  • Robert J. McDonald
Research Article

Abstract

Cognitive impairments are observed when learned associations are being acquired or retrieved during a period of circadian disruption. However, the extent of the functional impacts on previously acquired associations following circadian rhythm re-entrainment is unknown. The impacts of repeated photoperiod shifts on learning and memory in male and female rats were examined. For these experiments, rats were trained on a spatial version of the Morris water task (MWT) and a visual discrimination task designed for the 8-arm radial maze. Following asymptotic performance on these tasks, rats experienced a repeating photoperiod shift procedure and were then re-entrained. Following circadian re-entrainment, retention of pre-photoperiod-shift-acquired associations was tested. In addition, an extra-dimensional set shift was performed using the 8-arm radial maze. Impaired retention of the MWT platform location was observed in photoperiod-shifted subjects relative to subjects with stable, unmanipulated photoperiods. Repeated photoperiod shifts negatively impacted retention in males and females compared with subjects with stable photoperiods. Retention and the ability to detect extra-dimensional shifts on the visual discrimination task were also impaired, though not consistently by sex or photoperiod condition. Running wheel availability was also included in the analyses to determine whether exercise influenced the effects of photoperiod shifting. The absence of a running wheel produced significant declines in memory retention on both MWT and the visual discrimination task, but only for male rats. The observed impairments indicate that multiple neural systems supporting different learning and memory functions are susceptible to circadian disruption, even if the association is acquired prior to rhythm fragmentation and tested following rhythm re-entrainment.

Keywords

Photoperiod shifts Morris water task Differential reinforcement schedule Radial maze Male and female rats 

Abbreviations

DS

Dorsal striatum

EDS

Extra-dimensional set shift

HPC

Hippocampus

LD

Light–dark

LED

Light-emitting diode

MWT

Morris water task

PFC

Prefrontal cortex

SCN

Suprachiasmatic nucleus

S–R

Stimulus–response

References

  1. Antle MC, Silver R (2005) Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28:145–151. doi: 10.1016/j.tins.2005.01.003 PubMedCrossRefGoogle Scholar
  2. Antoniadis EA, Ko CH, Ralph MR, McDonald RJ (2000) Circadian rhythms, aging, and memory. Behav Brain Res 111:25–37. doi: 10.1016/S0166-4328(00)00290-4 PubMedCrossRefGoogle Scholar
  3. Beatty WW (1979) Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational and activational influences. Horm Behav 12:112–163. doi: 10.1016/506X(79)90017-5 PubMedCrossRefGoogle Scholar
  4. Benca R, Duncan MJ, Frank E, McClung C, Nelson RJ, Vicentic A (2009) Biological rhythms, higher brain function, and behavior: gaps, opportunities, and challenges. Brain Res Rev 62:57–70. doi: 10.1016/j.brainresrev.2009.09.005 PubMedCrossRefGoogle Scholar
  5. Blask DE, Dauchy RT, Sauer LA (2005) Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine 27:179–188. doi: 10.1385/ENDO:27:3:179 PubMedCrossRefGoogle Scholar
  6. Bombois S, Derambure P, Pasquier F, Monaca C (2010) Sleep disorders in aging and dementia. J Nutr Health Aging 14:212–217. doi: 10.1007/S12603-010-0052-7 PubMedCrossRefGoogle Scholar
  7. Butler MP, Silver R (2009) Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily. J Biol Rhythms 24:340–353. doi: 10.1177/0748730409344800 PubMedCrossRefGoogle Scholar
  8. Chrousos GP (1998) Ultradian, circadian, and stress-related hypothalamic-pituitary-adrenal axis activity—a dynamic digital-to-analog modulation. Endocrinology 139:437–440. doi: 10.1210/en.139.2.437 PubMedCrossRefGoogle Scholar
  9. Craig LA, McDonald RJ (2008) Chronic disruption of circadian rhythms impairs hippocampal memory in the rat. Brain Res Bull 15:141–151. doi: 10.1016/j.brainresbull.2008.02.013 CrossRefGoogle Scholar
  10. Dallmann R, Mrosovsky N (2006) Schedules wheel access during daytime: a method for studying conflicting zeitgebers. Physiol Behav 88:459–465. doi: 10.1016/j.physbeh.2006.04.022 PubMedCrossRefGoogle Scholar
  11. Dekloet ER (1991) Brain corticosteroid receptor balance and homeostatic control. Front Neuroendocrinol 12:95–164Google Scholar
  12. Devan BD, Goad EH, Petri HL, Antoniadis EA, Hong NS, Ko CH, McDonald RJ (2001) Circadian phase-shifted rats show normal acquisition but impaired long-term retention of place information in the water task. Neurobiol Learn Mem 75:51–62. doi: 10.1006/nlme.1999.3957 PubMedCrossRefGoogle Scholar
  13. Dickmeis T (2009) Glucocorticoids and the circadian clock. J Endocrinol 200:3–22. doi: 10.1677/JOE-08-0415 PubMedCrossRefGoogle Scholar
  14. Drapeau E, May W, Le Moal M, Piazza P, Abrous DN (2003) Spatial memory performances of aged rats in the water maze predicts levels of hippocampal neurogenesis. Proc Natl Acad Sci 100:14385–14390. doi: 10.1073/pnas.2334169100 PubMedCrossRefGoogle Scholar
  15. Featherstone RE, McDonald RJ (2004) Dorsal Striatum and stimulus-response learning: lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a simple discrimination task. Behav Brain Res 150:15–23. doi: 10.1016/S0166-4328(03)00218-3 PubMedCrossRefGoogle Scholar
  16. Featherstone RE, McDonald RJ (2005) Lesions of the dorsolateral or dorsomedial striatum impair performance of a previously acquired simple discrimination task. Neurobiol Learn Mem 84:159–167. doi: 10.1016/j.neuroscience.2005.08.021 PubMedCrossRefGoogle Scholar
  17. Frank JR, Ovens H (2004) Shiftwork and emergency medical practices. Can J Emerg Med Care 4:421–428Google Scholar
  18. Galea LAM (2008) Gonadal hormone modulation of neurogenesis in the dentate gyrus of male and female rodents. Brain Res Rev 57:332–341. doi: 10.1016/j.brainresrev.2007.05.008 PubMedCrossRefGoogle Scholar
  19. Galea LAM, Uban KA, Epp JR, Brummelte S, Barha SK, Pawluski JL (2008) Endocrine regulation of cognition and neuroplasticity: our pursuit to unveil the complex interaction between hormones, the brain, and behaviour. Can J Exp Psychol 62:247–260. doi: 10.1037/a0014501 PubMedCrossRefGoogle Scholar
  20. Gibson EM, Wang C, Tjho S, Khattar N, Kriegsfeld LJ (2010) Experimental ‘jet-lag’ inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters. PLoS ONE 5:e15267. doi: 10.1371/journal/pone.0015267 PubMedCrossRefGoogle Scholar
  21. Guzman-Marin R, Suntsova N, Bashir T, Nienhuis R, Szymusiak R, McGinty D (2008) Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep 13:167–175Google Scholar
  22. Hirota T, Fukada Y (2004) Resetting mechanism of central and peripheral circadian clocks in mammals. Zool Sci 21:359–368. doi: 10.2108/zsj.21.359 PubMedCrossRefGoogle Scholar
  23. Holloway FA, Wansley R (1973) Multiple retention deficits following one-trial appetitive training. Behav Biol 9:1–14. doi: 10.1016/S0091-6773(75)90135-2 PubMedCrossRefGoogle Scholar
  24. Holloway FA, Wansley R (1975) Multiphasic retention deficits at periodic intervals after passive-avoidance learning. Science 180:208–210. doi: 10.1126/science.180.4082.208 CrossRefGoogle Scholar
  25. Illnerová H, Sumová A (1997) Photic entrainment of the mammalian rhythm in melatonin production. J Biol Rhythms 12:547–555. doi: 10.1177/074873049701200609 PubMedCrossRefGoogle Scholar
  26. Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehgani F, Stehle JH (2010) Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus 20:377–388. doi: 10.1002/hipo.20637 PubMedGoogle Scholar
  27. Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res 320:65–98. doi: 10.1016.0165-0173(84)90018-3 PubMedGoogle Scholar
  28. Lewis NCS, Atkinson G, Lucas SJE, Grant EGM, Jones H, Ainslie PN (2010) Diurnal variation in time to presyncope and associated circulatory changes during controlled orthostatic challenge. Am J Physiol Regul Integr Comp Physiol 299:R55–R61. doi: 10.1152/ajpregu.00030.2010 PubMedCrossRefGoogle Scholar
  29. MacBeth AH, Luine VN (2010) Changes in anxiety and cognition due to reproductive experience: a review of data from rodent and human mothers. Neurosci Biobehav Rev 34:452–467. doi: 10.1016/j.neubiorev.2009.08.011 PubMedCrossRefGoogle Scholar
  30. Maren S, Fanselow MS (1997) Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiol Learn Mem 67:142–149. doi: 10.1006/nlme.1996.3752 PubMedCrossRefGoogle Scholar
  31. Marin R, Williams A, Hale S, Burge B, Mense M, Bauman R, Tortella F (2003) The effect of voluntary exercise on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav 80:167–175. doi: 10.1016/j.phsbeh.2003.06.001 PubMedCrossRefGoogle Scholar
  32. McDonald RJ, Hong NS (2004) A dissociation of dorso-lateral striatum and amygdala function on the same stimulus-response habit task. Neuroscience 124:507–513. doi: 10.1016/j.neuroscience.2003.11.041 PubMedCrossRefGoogle Scholar
  33. McDonald RJ, White NM (1993) A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci 107:2–22. doi: 10.1037/0735-7044.107.1.3 CrossRefGoogle Scholar
  34. McDonald RJ, Hong NS, Ray C, Ralph MR (2002) No time of day modulation or time stamp on multiple memory tasks in rats. Learn Motiv 33:230–252. doi: 10.1006/lmot.2001.1111 CrossRefGoogle Scholar
  35. McDonald RJ, King AL, Wasiak TD, Zelinski EL, Hong NS (2007) A complex associative structure formed in the mammalian brain during acquisition of a simple visual discrimination task: dorsolateral striatum, amygdala, and hippocampus. Hippocampus 17:759–774. doi: 10.1002/hipo.20333 PubMedCrossRefGoogle Scholar
  36. Meerlo P, Mistlberger RE, Jacobs BL, Heller HC, McGinty D (2009) New neurons in the adult brain: the role of sleep and consequences of sleep loss. Sleep Med Rev 13:187–194. doi: 10.1016/j.smrv.2008.07.004 PubMedCrossRefGoogle Scholar
  37. Mendlewicz J (2009) Sleep disturbances: core symptoms of major depressive disorder rather than associated or comorbid disorders. World J Biol Psychia 10:269–275. doi: 10.3109/15622970802503086 CrossRefGoogle Scholar
  38. Muzur A, Pace-Schott EF, Hobson JA (2002) The prefrontal cortex and sleep. Trends Cogn Sci 6:475–481. doi: 10.1016/S1364-6613(02)01992-7 PubMedCrossRefGoogle Scholar
  39. O’Keefe JA, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, LondonGoogle Scholar
  40. Okun ML, Coussons-Read ME (2007) Sleep disruption during pregnancy: how does it influence serum cytokines? J Reprod Immunol 73:158–165. doi: 10.1016/j.jri.2006.06.006 PubMedCrossRefGoogle Scholar
  41. Olson AK, Eadie BD, Ernst C, Christie BR (2006) Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 16:250–260. doi: 10.1002/hipo.20157 PubMedCrossRefGoogle Scholar
  42. Ostlund SB, Balleine BW (2007) The contribution of orbitofrontal cortex to action selection. Ann NY Acad Sci 1121:174–192. doi: 10.1196/annals.1401.033 PubMedCrossRefGoogle Scholar
  43. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:561–605. doi: 10.1038/nrn895 CrossRefGoogle Scholar
  44. Perez-Cruz C, Simon M, Flugge G, Fuchs E, Czeh B (2009) Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex. Behav Brain Res 205:406–413. doi: 10.1016/j.bbr.2009.07.021 PubMedCrossRefGoogle Scholar
  45. Phan TF, Chan GCK, Sindreu CB, Eckel-Mahan KL, Storm DR (2011) The diurnal oscillation of MAP (mitogen-activated protein) kinase and adenylyl cyclase activities in the hippocampus depends on the suprachiasmatic nucleus. Neuroscience 31:10640–10647. doi: 10.1523/JNEUROSCI.6535-10.2011 PubMedCrossRefGoogle Scholar
  46. Reddy AB, Field MD, Maywood ES, Hastings MH (2002) Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag. J Neurosci 22:7326–7330PubMedGoogle Scholar
  47. Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008) Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci USA 105:15593–15598. doi: 10.1073/pnas.0808259105 PubMedCrossRefGoogle Scholar
  48. Sanabria ERG, Scorza FA, Ortolotto ZA, Calderazzo LS, Cavalheiro EA (1996) Disruption of light-induced c-FOS immunoreactivity in the suprachiasmatic nuclei of chronic epileptic rats. Neurosci Lett 216:105–108. doi: 10.1016/S0304-3940(96)13020-2 PubMedGoogle Scholar
  49. Seale JV, Wood SA, Atkinson HC, Bate E, Lightman SL, Ingram CD, Harbuz MS (2004) Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic-pituitary-adrenal axis activity in male and female rats. J Neuroendocrinol 16:516–524. doi: 10.1111/j.1365-2826.2004.01195.x PubMedCrossRefGoogle Scholar
  50. Selgado-Delgado R, Angeles-Castellanos M, Buijs MR, Escobar C (2008) Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience 154:922–931. doi: 10.1016/j.neuroscience.2008.03.066 CrossRefGoogle Scholar
  51. Shieh K (2003) Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK in the rat brain. Neuroscience 118:831–843. doi: 10.1016/S0306-4522(03)00004-6 PubMedCrossRefGoogle Scholar
  52. Shors TJ, Cua C, Falduto J (2001) Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21:6292–6297PubMedGoogle Scholar
  53. Sindreu CB, Scheiner ZS, Storm DR (2007) Calcium-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53:79–89. doi: 10.1016/j.neuron.2006.11.024 PubMedCrossRefGoogle Scholar
  54. Spanswick SC, Lehmann H, Sutherland RJ (2011) A novel animal model of hippocampal cognitive deficits, slow neurodegeneration, and neuroregeneration. J Biomed Biotechnol 2011:527201. doi: 10.1155/2011/527201 PubMedCrossRefGoogle Scholar
  55. Stephan FK, Kovacevic NS (1978) Multiple retention deficits in passive avoidance in rats is eliminated by suprachiasmatic lesions. Behav Biol 22:456–462. doi: 10.1016/S0091-6773(78)92565-8 PubMedCrossRefGoogle Scholar
  56. Sutherland RJ, McDonald RJ (1990) Hippocampus, amygdala, and memory deficits in rats. Behav Brain Res 37:57–79. doi: 10.1016/0166-4328(90)90072-M PubMedCrossRefGoogle Scholar
  57. Sutherland RJ, Kolb B, Whishaw IQ (1982) Spatial mapping: definitive disruption by hippocampal or medial frontal cortical damage in the rat. Neurosci Lett 31:271–276. doi: 10.1016/0304-3940(82)90032-5 PubMedCrossRefGoogle Scholar
  58. Tashiro A, Makino H, Gage FH (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during and immature stage. Neuroscience 27:3252–3259. doi: 10.1523/JNEUROSCI.4941-06.2007 PubMedCrossRefGoogle Scholar
  59. Tischkau SA, Cohen JA, Stark JT, Gross DR, Bottum KM (2007) Time-of-day affects expression of hippocampal markers for ischemic damage induced by global ischemia. Exp Neurol 208:314–322. doi: 10.1016/j.expneurol.2007.09.003 PubMedCrossRefGoogle Scholar
  60. Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P (2002) Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci 99:7728–7733. doi: 10.1073/pnas.102075599 PubMedCrossRefGoogle Scholar
  61. Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of Memory. Academic Press, San Diego, pp 381–403Google Scholar
  62. Ukai H, Ueda HR (2010) Systems biology of mammalian circadian clocks. Annu Rev Psychol 72:579–603. doi: 10.1146/annurev-physiol-073109-130051 Google Scholar
  63. Viau V (2002) Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. J Endocrinol 14:506–513. doi: 10.1046/j.1365-2826.2002.00798.x Google Scholar
  64. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 13:1190–1196. doi: 10.1046/j.0953-816x.2001.01483.x PubMedCrossRefGoogle Scholar
  65. Winstanley CA (2007) The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level. Ann NY Acad Sci 1121:639–655. doi: 10.1196/annals.1401.024 PubMedCrossRefGoogle Scholar
  66. Wong ST, Athos J, Figueroa XA, Pineda VV, Schaefer ML, Chavkin CC, Muglia LJ, Storm DR (1999) Calcium-stimulated adenylyl cyclase activity is critical for hippocampal-dependent long-term memory and late phase LTP. Neuron 23:787–798. doi: 10.1016/S0896-6273(01)80036-2 PubMedCrossRefGoogle Scholar
  67. Wu ZL, Thomas SA, Villacres EC, Xia Z, Simmons ML, Chavkin C, Palmiter RD, Storm DR (1995) Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc Nat Acad Sci 92:220–224. doi: 10.1073/pnas.92.1.220 PubMedCrossRefGoogle Scholar
  68. Yang LY, Verhovshek T, Sengelaub DR (2004) Brain-derived neurotrophic factor and androgen interact in the maintenance of dendritic morphology in a sexually dimorphic rat spinal nucleus. Endocrinology 145:161–168. doi: 10.1210/en.2003-0853 PubMedCrossRefGoogle Scholar
  69. Zelinski EL, Hong NS, McDonald RJ (under review) Persistent impairments in hippocampal function following acute circadian disruption in ratsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erin L. Zelinski
    • 1
    Email author
  • Amanda V. Tyndall
    • 2
  • Nancy S. Hong
    • 1
  • Robert J. McDonald
    • 1
  1. 1.Department of Neuroscience, Canadian Centre for Behavioural NeuroscienceUniversity of LethbridgeLethbridgeCanada
  2. 2.Department of Neuroscience, Faculty of Medicine, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada

Personalised recommendations