Skip to main content
Log in

Cortical representation of different motor rhythms during bimanual movements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The cortical control of bimanual and unimanual movements involves complex facilitatory and inhibitory interhemispheric interactions. We analysed the part of the cortical network directly related to the motor output by corticomuscular (64 channel EEG–EMG) and cortico-cortical (EEG–EEG) coherence and delays at the frequency of a voluntarily maintained unimanual and bimanual rhythm and in the 15–30-Hz band during isometric contractions. Voluntary rhythms of each hand showed coherence with lateral cortical areas in both hemispheres and occasionally in the frontal midline region (60–80 % of the recordings and 10–30 %, respectively). They were always coherent between both hands, and this coherence was positively correlated with the interhemispheric coherence (p < 0.01). Unilateral movements were represented mainly in the contralateral cortex (60–80 vs. 10–30 % ipsilateral, p < 0.01). Ipsilateral coherence was more common in left-hand movements, paralleled by more left–right muscle coherence. Partial corticomuscular coherence most often disappeared (p < 0.05) when the contralateral cortex was the predictor, indicating a mainly indirect connection of ipsilateral/frontomesial representations with the muscle via contralateral cortex. Interhemispheric delays had a bimodal distribution (1–10 and 15–30 ms) indicating direct and subcortical routes. Corticomuscular delays (mainly 12–25 ms) indicated fast corticospinal projections and musculocortical feedback. The 15–30-Hz corticomuscular coherence during isometric contractions (60–70 % of recordings) was strictly contralaterally represented without any peripheral left–right coherence. Thus, bilateral cortical areas generate voluntary unimanual and bimanual rhythmic movements. Interhemispheric interactions as detected by EEG–EEG coherence contribute to bimanual synchronization. This is distinct from the unilateral cortical representation of the 15–30-Hz motor rhythm during isometric movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Addamo PK, Farrow M, Hoy KE, Bradshaw JL, Georgiou-Karistianis N (2009) A developmental study of the influence of task characteristics on motor overflow. Brain Cogn 69:413–419

    Article  PubMed  Google Scholar 

  • Albo Z, Di Prisco GV, Chen Y, Rangarajan G, Truccolo W, Feng J, Vertes RP, Ding M (2004) Is partial coherence a viable technique for identifying generators of neural oscillations? Biol Cybern 90:318–326

    Article  PubMed  Google Scholar 

  • Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M, Gerloff C (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122(Pt 5):855–870

    Article  PubMed  Google Scholar 

  • Armatas CA, Summers JJ (2001) The influence of task characteristics on the intermanual asymmetry of motor overflow. J Clin Exp Neuropsychol 23:557–567

    Article  PubMed  CAS  Google Scholar 

  • Brown P (2000) Cortical drives to human muscle: the Piper and related rhythms. Prog Neurobiol 60:97–108

    Article  PubMed  CAS  Google Scholar 

  • Brown RG, Jahanshahi M (1998) An unusual enhancement of motor performance during bimanual movement in Parkinson’s disease. J Neurol Neurosurg Psychiatry 64:813–816

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Thompson PD (2001) Electrophysiological aids to the diagnosis of psychogenic jerks, spasms, and tremor. Mov Disord 16:595–599

    Article  PubMed  CAS  Google Scholar 

  • Brown P, Salenius S, Rothwell JC, Hari R (1998) Cortical correlate of the Piper rhythm in humans. J Neurophysiol 80:2911–2917

    PubMed  CAS  Google Scholar 

  • Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 49:641–662

    Article  PubMed  CAS  Google Scholar 

  • Carter GC (1987) Coherence and time delay estimation. Proc IEEE 75:236–255

    Article  Google Scholar 

  • Chiarello C, Maxfield L (1996) Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain Cogn 30:81–108

    Article  PubMed  CAS  Google Scholar 

  • Cincotta M, Ziemann U (2008) Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 119:744–762

    Article  PubMed  CAS  Google Scholar 

  • Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P, Weir AI, Rosenberg JR (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489(Pt 3):917–924

    PubMed  CAS  Google Scholar 

  • De Gennaro L, Ferrara M, Bertini M, Pauri F, Cristiani R, Curcio G, Romei V, Fratello F, Rossini PM (2003) Reproducibility of callosal effects of transcranial magnetic stimulation (TMS) with interhemispheric paired pulses. Neurosci Res 46:219–227

    Article  PubMed  Google Scholar 

  • De Gennaro L, Bertini M, Pauri F, Cristiani R, Curcio G, Ferrara M, Rossini PM (2004) Callosal effects of transcranial magnetic stimulation (TMS): the influence of gender and stimulus parameters. Neurosci Res 48:129–137

    Article  PubMed  Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage 21:1416–1427

    Article  PubMed  CAS  Google Scholar 

  • Donchin O, Gribova A, Steinberg O, Mitz AR, Bergman H, Vaadia E (2002) Single-unit activity related to bimanual arm movements in the primary and supplementary motor cortices. J Neurophysiol 88:3498–3517

    Article  PubMed  CAS  Google Scholar 

  • Farmer SF, Harrison LM, Mayston MJ, Parekh A, James LM, Stephens JA (2004) Abnormal cortex–muscle interactions in subjects with X-linked Kallmann’s syndrome and mirror movements. Brain 127:385–397

    Article  PubMed  CAS  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    PubMed  CAS  Google Scholar 

  • Fling BW, Walsh CM, Bangert AS, Reuter-Lorenz PA, Welsh RC, Seidler RD (2011) Differential callosal contributions to bimanual control in young and older adults. J Cogn Neurosci 23:2171–2185

    Article  PubMed  Google Scholar 

  • Gerloff C, Andres FG (2002) Bimanual coordination and interhemispheric interaction. Acta Psychol (Amst) 110:161–186

    Article  Google Scholar 

  • Gerloff C, Toro C, Uenishi N, Cohen LG, Leocani L, Hallett M (1997) Steady-state movement-related cortical potentials: a new approach to assessing cortical activity associated with fast repetitive finger movements. Electroencephalogr Clin Neurophysiol 102:106–113

    Article  PubMed  CAS  Google Scholar 

  • Gerloff C, Uenishi N, Nagamine T, Kunieda T, Hallett M, Shibasaki H (1998) Cortical activation during fast repetitive finger movements in humans: steady-state movement-related magnetic fields and their cortical generators. Electroencephalogr Clin Neurophysiol/Electromyogr Motor Control 109:444–453

    Article  CAS  Google Scholar 

  • Govindan RB, Raethjen J, Kopper F, Claussen JC, Deuschl G (2005) Estimation of delay time by coherence analysis. Phys A 350:277–295

    Article  Google Scholar 

  • Govindan RB, Raethjen J, Arning K, Kopper F, Deuschl G (2006) Time delay and partial coherence analyses to identify cortical connectivities. Biol Cybern 94:262–275

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Pollok B, Dirks M, Timmermann L, Butz M, Schnitzler A (2005) Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. Neuroimage 26:91–98

    Article  PubMed  CAS  Google Scholar 

  • Halliday D, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer SF (1995) A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64:237–278

    Article  PubMed  CAS  Google Scholar 

  • Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241:5–8

    Article  PubMed  CAS  Google Scholar 

  • Hari R (2005) Magnetoencephalography in clinical neurophysiological assessment of human cortical functions. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications, and related fields, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1165–1197

  • Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39:526–530

    Article  PubMed  CAS  Google Scholar 

  • Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. Neuroimage 14:674–684

    Article  PubMed  CAS  Google Scholar 

  • Journee HL (1983) Demodulation of amplitude modulated noise: a mathematical evaluation of a demodulator for pathological tremor EMG’s. IEEE Trans Biomed Eng 30:304–308

    Article  PubMed  CAS  Google Scholar 

  • Kazennikov O, Hyland B, Corboz M, Babalian A, Rouiller EM, Wiesendanger M (1999) Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences. Neuroscience 89:661–674

    Article  PubMed  CAS  Google Scholar 

  • Kilner JM, Baker SN, Salenius S, Hari R, Lemon RN (2000) Human cortical muscle coherence is directly related to specific motor parameters. J Neurosci 20:8838–8845

    PubMed  CAS  Google Scholar 

  • Kilner JM, Salenius S, Baker SN, Jackson A, Hari R, Lemon RN (2003) Task-dependent modulations of cortical oscillatory activity in human subjects during a bimanual precision grip task. Neuroimage 18:67–73

    Article  PubMed  CAS  Google Scholar 

  • Koeneke S, Lutz K, Wustenberg T, Jancke L (2004) Bimanual versus unimanual coordination: what makes the difference? Neuroimage 22:1336–1350

    Article  PubMed  Google Scholar 

  • Lindemann M, Raethjen J, Timmer J, Deuschl G, Pfister G (2001) Delay estimation for cortico–peripheral relations. J Neurosci Methods 111:127–139

    Article  PubMed  CAS  Google Scholar 

  • Liuzzi G, Hörniß V, Zimerman M, Gerloff C, Hummel FC (2011) Coordination of uncoupled bimanual movements by strictly timed interhemispheric connectivity. J Neurosci 31:9111–9117

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Urbano FJ, Leznik E, RamÃrez RR, van Marle HJF (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:325–333

    Article  PubMed  CAS  Google Scholar 

  • Mayville J, Fuchs A, Kelso J (2005) Neuromagnetic motor fields accompanying self-paced rhythmic finger movement at different rates. Exp Brain Res 166:190–199

    Article  PubMed  Google Scholar 

  • McAuley JH, Rothwell JC, Marsden CD (1997) Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing. Exp Brain Res 114:525–541

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Hallett M (1999) Corticomuscular coherence: a review. J Clin Neurophysiol 16:501–511

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Matsuoka T, Hallett M (2000) Functional coupling of human right and left cortical motor areas demonstrated with partial coherence analysis. Neurosci Lett 287:93–96

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Lauk M, Reinhard M, Hetzel A, Lucking CH, Timmer J (2003) Estimation of delay times in biological systems. Ann Biomed Eng 31:1423–1439

    Article  PubMed  CAS  Google Scholar 

  • Muthuraman M, Heute U, Arning K, Anwar AR, Elble R, Deuschl G, Raethjen J (2012) Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? NeuroImage 60:1331–1339

    Article  PubMed  CAS  Google Scholar 

  • Oda S, Moritani T (1996) Cross-correlation studies of movement-related cortical potentials during unilateral and bilateral muscle contractions in humans. Eur J Appl Physiol Occup Physiol 74:29–35

    Article  PubMed  CAS  Google Scholar 

  • O’Suilleabhain PE, Matsumoto JY (1998) Time-frequency analysis of tremors. Brain 121(Pt 11):2127–2134

    Article  PubMed  Google Scholar 

  • Peters M (1977) Simultaneous performance of two motor activities: the factor of timing. Neuropsychologia 15:461–465

    Article  PubMed  CAS  Google Scholar 

  • Pollok B, Gross J, Dirks M, Timmermann L, Schnitzler A (2004a) The cerebral oscillatory network of voluntary tremor. J Physiol 554:871–878

    Article  PubMed  CAS  Google Scholar 

  • Pollok B, Muller K, Aschersleben G, Schnitzler A, Prinz W (2004b) Bimanual coordination: neuromagnetic and behavioral data. NeuroReport 15:449–452

    Article  PubMed  Google Scholar 

  • Pollok B, Sudmeyer M, Gross J, Schnitzler A (2005) The oscillatory network of simple repetitive bimanual movements. Brain Res Cogn Brain Res 25:300–311

    Article  PubMed  Google Scholar 

  • Pollok B, Gross J, Schnitzler A (2006) Asymmetry of interhemispheric interaction in left-handed subjects. Exp Brain Res 175:268–275

    Article  PubMed  Google Scholar 

  • Pollok B, Butz M, Gross J, Schnitzler A (2007) Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci 19:704–719

    Article  PubMed  Google Scholar 

  • Pollok B, Gross J, Kamp D, Schnitzler A (2008) Evidence for anticipatory motor control within a cerebello-diencephalic-parietal network. J Cogn Neurosci 20:828–840

    Article  PubMed  Google Scholar 

  • Pollok B, Krause V, Butz M, Schnitzler A (2009) Modality specific functional interaction in sensorimotor synchronization. Hum Brain Mapp 30:1783–1790

    Article  PubMed  Google Scholar 

  • Raethjen J, Pawlas F, Lindemann M, Wenzelburger R, Deuschl G (2000) Determinants of physiologic tremor in a large normal population. Clin Neurophysiol 111:1825–1837

    Article  PubMed  CAS  Google Scholar 

  • Raethjen J, Lindemann M, Morsnowski A, Dumpelmann M, Wenzelburger R, Stolze H, Fietzek U, Pfister G, Elger CE, Timmer J, Deuschl G (2004) Is the rhythm of physiological tremor involved in cortico–cortical interactions? Mov Disord 19:458–465

    Article  PubMed  Google Scholar 

  • Raos V, Bentivoglio M (1993) Crosstalk between the two sides of the thalamus through the reticular nucleus: a retrograde and anterograde tracing study in the rat. J Comp Neurol 332:145–154

    Article  PubMed  CAS  Google Scholar 

  • Riddle CN, Baker SN (2006) Digit displacement, not object compliance, underlies task dependent modulations in human corticomuscular coherence. NeuroImage 33:618–627

    Article  PubMed  Google Scholar 

  • Rosenberg JR, Halliday DM, Breeze P, Conway BA (1998) Identification of patterns of neuronal connectivity—partial spectra, partial coherence, and neuronal interactions. J Neurosci Methods 83:57–72

    Article  PubMed  CAS  Google Scholar 

  • Rosina A, Provini L (1984) Pontocerebellar system linking the two hemispheres by intracerebellar branching. Brain Res 296:365–369

    Article  PubMed  CAS  Google Scholar 

  • Serrien DJ (2008) Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychologia 46:419–425

    Article  PubMed  Google Scholar 

  • Serrien DJ, Brown P (2002) The functional role of interhemispheric synchronization in the control of bimanual timing tasks. Exp Brain Res 147:268–272

    Article  PubMed  Google Scholar 

  • Smith JB, Alloway KD (2010) Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 30:16832–16844

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3:348–359

    Article  PubMed  Google Scholar 

  • Tanji J, Okano K, Sato KC (1987) Relation of neurons in the nonprimary motor cortex to bilateral hand movement. Nature 327:618–620

    Article  PubMed  CAS  Google Scholar 

  • Timmer J, Lauk M, Pfleger W, Deuschl G (1998) Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram. Biol Cybern 78:349–357

    Article  PubMed  CAS  Google Scholar 

  • Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A (2003) The cerebral oscillatory network of parkinsonian resting tremor. Brain 126:199–212

    Article  PubMed  Google Scholar 

  • Wiesendanger M, Kaluzny P, Kazennikov O, Palmeri A, Perrig S (1994) Temporal coordination in bimanual actions. Can J Physiol Pharmacol 72:591–594

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906

    Article  PubMed  CAS  Google Scholar 

  • Ziemann U, Ilić TV, Alle H, Meintzschel F (2004) Estimated magnitude and interactions of cortico-motoneuronal and Ia afferent input to spinal motoneurones of the human hand. Neurosci Lett 364:48–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German medical research council (Deutsche Forschungsgemeinschaft, DFG, SFB 855).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muthuraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthuraman, M., Arning, K., Govindan, R.B. et al. Cortical representation of different motor rhythms during bimanual movements. Exp Brain Res 223, 489–504 (2012). https://doi.org/10.1007/s00221-012-3276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3276-4

Keywords

Navigation