Advertisement

Experimental Brain Research

, Volume 223, Issue 1, pp 43–50 | Cite as

The effect of BDNF val66met polymorphism on visuomotor adaptation

  • Raed A. Joundi
  • Virginia Lopez-Alonso
  • Angel Lago
  • John-Stuart Brittain
  • Miguel Fernandez-del-Olmo
  • Pilar Gomez-Garre
  • Pablo Mir
  • Ned Jenkinson
  • Binith Cheeran
  • Peter Brown
Research Article

Abstract

Brain-derived neurotrophic factor (BDNF) plays an important role in learning, memory, and brain plasticity. Humans with a val66met polymorphism in the BDNF gene have reduced levels of BDNF and alterations in motor learning and short-term cortical plasticity. In the current study, we sought to further explore the role of BDNF in motor learning by testing human subjects on a visuomotor adaptation task. In experiment 1, 21 subjects with the polymorphism (val/met) and 21 matched controls (val/val) were tested during learning, short-term retention (45 min), long-term retention (24 h), and de-adaptation of a 60° visuomotor deviation. We measured both mean error as well as rate of adaptation during each session. There was no difference in mean error between groups; however, val/met subjects had a reduced rate of adaptation during learning as well as during long-term retention, but not short-term retention or de-adaptation. In experiment 2, 12 val/met and 12 val/val subjects were tested on a larger 80° deviation, revealing a more pronounced difference in mean error during adaptation than the 60° deviation. These results suggest that BDNF may play an important role in visuomotor adaptive processes in the human.

Keywords

Brain-derived neurotrophic factor val/met polymorphism Visuomotor adaptation Motor learning 

Notes

Acknowledgments

V.L-A, AL, and PG-G were financed by the Ministerio de Ciencia e Innovación (DEP2011-22466), (Ministry of Science and Innovation), Spain. PG-G and PM were supported by grants from the Ministerio de Ciencia e Innovación de España (Spanish Ministry of Science and Innovation) (SAF2007-60700); Instituto de Salud Carlos III (PI10/01674); the Consejería de Innovación, Ciencia y Empresa de la Junta de Andalucía (Department of Innovation, Science and Business of Andalusia) (CVI-02526, CTS-7685); the Consejería de Salud de la Junta de Andalucía (Department of Health of Andalusia) (PI-0377/2007, PI-0741/2010), the Sociedad Andaluza de Neurología and the Jaques and Gloria Gossweiler Foundation. PG-G was also supported by the ‘Miguel Servet’ program from the Instituto de Salud Carlos III. RAJ, JB, NJ, and PB were supported by the Medical Research Council UK, PDUK, and the NIHR Oxford Biomedical Research Centre.

References

  1. Alberch J, López M, Badenas C, Carrasco JL, Milà M, Muñoz E, Canals JM (2005) Association between BDNF Val66Met polymorphism and age at onset in Huntington disease. Neurology 65:964–965PubMedCrossRefGoogle Scholar
  2. Anguera JA, Seidler RD, Gehring WJ (2009) Changes in performance monitoring during sensorimotor adaptation. J Neurophysiol 102:1868–1879PubMedCrossRefGoogle Scholar
  3. Balkowiec A, Katz DM (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J Neurosci 22:10399–10407PubMedGoogle Scholar
  4. Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience 167:588–597PubMedCrossRefGoogle Scholar
  5. Beste C, Kolev V, Yordanova J, Domschke K, Falkenstein M, Baune BT, Konrad C (2010) The role of the BDNF Val66Met polymorphism for the synchronization of error-specific neural networks. J Neurosci 30:10727–10733PubMedCrossRefGoogle Scholar
  6. Cheeran B, Talelli P, Mori F, Koch G, Suppa A, Edwards M, Houlden H, Bhatia K, Greenwood R, Rothwell JC (2008) A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol 586:5717–5725PubMedCrossRefGoogle Scholar
  7. Chen Y, Ding M, Kelso JAS (2003) Task-related power and coherence changes in neuromagnetic activity during visuomotor coordination. Exp Brain Res 148:105–116PubMedCrossRefGoogle Scholar
  8. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269PubMedCrossRefGoogle Scholar
  9. Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381:706–709PubMedCrossRefGoogle Scholar
  10. Foltynie T, Cheeran B, Williams-Gray CH, Edwards MJ, Schneider SA, Weinberger D, Rothwell JC, Barker RA, Bhatia KP (2009) BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatr 80:141–144PubMedCrossRefGoogle Scholar
  11. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, Lu B (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66:198–204PubMedCrossRefGoogle Scholar
  12. Gómez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol 88:2187–2195PubMedCrossRefGoogle Scholar
  13. Gorski JA, Zeiler SR, Tamowski S, Jones KR (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23:6856–6865PubMedGoogle Scholar
  14. Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR (2003) Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J Neurosci 23:6690–6694PubMedGoogle Scholar
  15. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755PubMedCrossRefGoogle Scholar
  16. Huang VS, Haith A, Mazzoni P, Krakauer JW (2011) Rethinking motor learning and savings in adaptation paradigms: model-free memory for successful actions combines with internal models. Neuron 70:787–801PubMedCrossRefGoogle Scholar
  17. Ishibashi H, Hihara S, Takahashi M, Heike T, Yokota T, Iriki A (2002) Tool-use learning induces BDNF expression in a selective portion of monkey anterior parietal cortex. Brain Res Mol Brain Res 102:110–112PubMedCrossRefGoogle Scholar
  18. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R, Cramer SC (2006) BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 9:735–737PubMedCrossRefGoogle Scholar
  19. Klintsova AY, Dickson E, Yoshida R, Greenough WT (2004) Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 1028:92–104PubMedCrossRefGoogle Scholar
  20. Krakauer JW, Ghez C, Ghilardi MF (2005) Adaptation to visuomotor transformations: consolidation, interference, and forgetting. J Neurosci 25:473–478PubMedCrossRefGoogle Scholar
  21. Li Voti P, Conte A, Suppa A, Iezzi E, Bologna M, Aniello MS, Defazio G, Rothwell JC, Berardelli A (2011) Correlation between cortical plasticity, motor learning and BDNF genotype in healthy subjects. Exp Brain Res 212:91–99PubMedCrossRefGoogle Scholar
  22. Lu B, Gottschalk W (2000) Modulation of hippocampal synaptic transmission and plasticity by neurotrophins. Prog Brain Res 128:231–241PubMedCrossRefGoogle Scholar
  23. McHughen SA, Rodriguez PF, Kleim JA, Kleim ED, Marchal Crespo L, Procaccio V, Cramer SC (2010) BDNF val66met polymorphism influences motor system function in the human brain. Cereb Cortex 20:1254–1262PubMedCrossRefGoogle Scholar
  24. McHughen SA, Pearson-Fuhrhop K, Ngo VK, Cramer SC (2011) Intense training overcomes effects of the val66met BDNF polymorphism on short-term plasticity. Exp Brain Res 213:415–422PubMedCrossRefGoogle Scholar
  25. Meis S, Endres T, Lessmann V (2011) Postsynaptic BDNF signaling regulates long-term potentiation at thalamo-amygdala afferents. J Physiol 590:193–208PubMedGoogle Scholar
  26. Missitzi J, Gentner R, Geladas N, Politis P, Karandreas N, Classen J, Klissouras V (2011) Plasticity in human motor cortex is in part genetically determined. J Physiol 589:297–306PubMedCrossRefGoogle Scholar
  27. Neeper SA, Gómez-Pinilla F, Choi J, Cotman C (1995) Exercise and brain neurotrophins. Nature 373:109PubMedCrossRefGoogle Scholar
  28. Oroszi G, Lapteva L, Davis E, Yarboro CH, Weickert T, Roebuck-Spencer T, Bleiberg J, Rosenstein D, Pao M, Lipsky PE et al (2006) The Met66 allele of the functional Val66Met polymorphism in the brain-derived neurotrophic factor gene confers protection against neurocognitive dysfunction in systemic lupus erythematosus. Ann Rheum Dis 65:1330–1335PubMedCrossRefGoogle Scholar
  29. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, Egan MF, Meyer-Lindenberg A, Weinberger DR (2004) The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24:10099–10102PubMedCrossRefGoogle Scholar
  30. Ploughman M, Windle V, MacLellan CL, White N, Doré JJ, Corbett D (2009) Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40:1490–1495PubMedCrossRefGoogle Scholar
  31. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069PubMedCrossRefGoogle Scholar
  32. Zhang X, Poo M (2002) Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron 36:675–688PubMedCrossRefGoogle Scholar
  33. Zivadinov R, Weinstock-Guttman B, Benedict R, Tamaño-Blanco M, Hussein S, Abdelrahman N, Durfee J, Ramanathan M (2007) Preservation of gray matter volume in multiple sclerosis patients with the Met allele of the rs6265 (Val66Met) SNP of brain-derived neurotrophic factor. Hum Mol Genet 16:2659–2668PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Raed A. Joundi
    • 1
  • Virginia Lopez-Alonso
    • 2
  • Angel Lago
    • 2
  • John-Stuart Brittain
    • 1
    • 3
  • Miguel Fernandez-del-Olmo
    • 2
  • Pilar Gomez-Garre
    • 4
  • Pablo Mir
    • 4
    • 5
  • Ned Jenkinson
    • 1
  • Binith Cheeran
    • 1
  • Peter Brown
    • 1
  1. 1.Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
  2. 2.Learning and Human Movement Control Group, INEF GaliciaUniversity of A CoruñaA CoruñaSpain
  3. 3.Department of Engineering Science, Institute of Biomedical Engineering, Centre of Excellence in Personalised HealthcareUniversity of OxfordOxfordUK
  4. 4.Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiolgía Clínica, Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
  5. 5.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)SevilleSpain

Personalised recommendations