Advertisement

Experimental Brain Research

, Volume 223, Issue 1, pp 1–10 | Cite as

Electrocorticographic (ECoG) correlates of human arm movements

  • Nicholas R. AndersonEmail author
  • Tim Blakely
  • Gerwin Schalk
  • Eric C. Leuthardt
  • Daniel W. Moran
Research Article

Abstract

Invasive and non-invasive brain–computer interface (BCI) studies have long focused on the motor cortex for kinematic control of artificial devices. Most of these studies have used single-neuron recordings or electroencephalography (EEG). Electrocorticography (ECoG) is a relatively new recording modality in BCI research that has primarily been built on successes in EEG recordings. We built on prior experiments related to single-neuron recording and quantitatively compare the extent to which different brain regions reflect kinematic tuning parameters of hand speed, direction, and velocity in both a reaching and tracing task in humans. Hand and arm movement experiments using ECoG have shown positive results before, but the tasks were not designed to tease out which kinematics are encoded. In non-human primates, the relationships among these kinematics have been more carefully documented, and we sought to begin elucidating that relationship in humans using ECoG. The largest modulation in ECoG activity for direction, speed, and velocity representation was found in the primary motor cortex. We also found consistent cosine tuning across both tasks, to hand direction and velocity in the high gamma band (70–160 Hz). Thus, the results of this study clarify the neural substrates involved in encoding aspects of motor preparation and execution and confirm the important role of the motor cortex in BCI applications.

Keywords

Electrocorticography Subdural electroencephalography Motor cortex Brain–computer interfaces Arm tuning Cosine tuning 

Notes

Acknowledgments

This work was supported in part by the McDonnell Center for Higher Brain Function by grants from the NIH/NIBIB (EB006356 (GS) and EB000856 (GS)), and from the US Army Research Office (W911NF-07-1-0415 (GS), W911NF-08-1-0216 (GS)). N. Anderson was with Washington University in St. Louis and is now with Cortech Solutions. T. Blakely was with Washington University in St. Louis and is now with the University of Washington. G. Schalk is with the Wadsworth Center, Albany, NY. E. Leuthardt is with Washington University School of Medicine in St. Louis. D. Moran is with Washington University in St. Louis.

References

  1. Anderson NR, Wisneski K, Eisenman L, Moran DW, Leuthardt EC, Krusienski DJ (2009) An offline evaluation of the autoregressive spectrum for electrocorticography. IEEE Trans Biomed Eng 56(3):913–916. doi: 10.1109/TBME.2009.2009767 PubMedCrossRefGoogle Scholar
  2. Baker SN, Philbin N, Spinks R, Pinches EM, Wolpert DM, MacManus DG, Pauluis Q, Lemon RN (1999) Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. J Neurosci Methods 94(1):5–17PubMedCrossRefGoogle Scholar
  3. Blake AJ, Rodgers FC, Bassuener A, Hippensteel JA, Pearce TM, Pearce TR, Zarnowska ED, Pearce RA, Williams JC (2010) A microfluidic brain slice perfusion chamber for multisite recording using penetrating electrodes. J Neurosci Methods. doi: 10.1016/j.jneumeth.2010.02.017 PubMedGoogle Scholar
  4. Bullara LA, Agnew WF, Yuen TG, Jacques S, Pudenz RH (1979) Evaluation of electrode array material for neural prostheses. Neurosurgery 5(6):681–686PubMedCrossRefGoogle Scholar
  5. Caminiti R, Johnson PB, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10(7):2039–2058PubMedGoogle Scholar
  6. Chao ZC, Nagasaka Y, Fujii N (2010) Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front Neuroeng 3:3. doi: 10.3389/fneng.2010.00003 PubMedGoogle Scholar
  7. Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(Pt 12):2301–2315PubMedCrossRefGoogle Scholar
  8. Dobelle WH, Stensaas SS, Mladejovsky MG, Smith JB (1973) A prosthesis for the deaf based on cortical stimulation. Ann Otol Rhinol Laryngol 82(4):445–463PubMedGoogle Scholar
  9. Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7(7):e1000153. doi: 10.1371/journal.pbio.1000153 PubMedCrossRefGoogle Scholar
  10. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537PubMedGoogle Scholar
  11. Georgopoulos A, Lurito J, Petrides M, Schwartz A, Massey J (1989) Mental rotation of the neuronal population vector. Science 243:234–236PubMedCrossRefGoogle Scholar
  12. Heldman DA, Wang W, Chan SS, Moran DW (2006) Local field potential spectral tuning in motor cortex during reaching. IEEE Trans Neural Syst Rehabil Eng 14(2):180–183PubMedCrossRefGoogle Scholar
  13. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JPD-n (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171PubMedCrossRefGoogle Scholar
  14. Klobassa DS, Vaughan TM, Brunner P, Schwartz NE, Wolpaw JR, Neuper C, Sellers EW (2009) Toward a high-throughput auditory P300-based brain-computer interface. Clin Neurophysiol 120(7):1252–1261. doi: 10.1016/j.clinph.2009.04.019 PubMedCrossRefGoogle Scholar
  15. Kubanek J, Miller KJ, Ojemann JG, Wolpaw JR, Schalk G (2009) Decoding flexion of individual fingers using electrocorticographic signals in humans. J Neural Eng 6(6):066001. doi: 10.1088/1741-2560/6/6/066001 PubMedCrossRefGoogle Scholar
  16. Kubler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR (2005) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10):1775–1777. doi: 10.1212/01.WNL.0000158616.43002.6D PubMedCrossRefGoogle Scholar
  17. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 1(2):63–71PubMedCrossRefGoogle Scholar
  18. Leuthardt EC, Miller KJ, Schalk G, Rao RPN, Ojemann JG (2006a) Electrocorticography-based brain computer interface—The Seattle Experience. IEEE Trans Neural Syst Rehabil Eng 14(2):194–198Google Scholar
  19. Leuthardt EC, Schalk G, Moran D, Ojemann JG (2006b) The emerging world of motor neuroprosthetics. A neurosurgical perspective. Neurosurgery 59(1):1–14PubMedCrossRefGoogle Scholar
  20. Liu X, McCreery DB, Carter RR, Bullara LA, Yuen TG, Agnew WF (1999) Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes. IEEE Trans Rehabil Eng 7(3):315–326PubMedCrossRefGoogle Scholar
  21. Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW, Miller JW, Ojemann JG (2007) Spectral changes in cortical surface potentials during motor movement. J Neurosci 27(9):2424–2432. doi: 10.1523/JNEUROSCI.3886-06.2007 PubMedCrossRefGoogle Scholar
  22. Miller KJ, Shenoy P, den Nijs M, Sorensen LB, Rao RN, Ojemann JG (2008) Beyond the gamma band: the role of high-frequency features in movement classification. IEEE Trans Biomed Eng 55(5):1634–1637. doi: 10.1109/TBME.2008.918569 PubMedCrossRefGoogle Scholar
  23. Moran DW, Schwartz AB (1999a) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82(5):2676–2692PubMedGoogle Scholar
  24. Moran DW, Schwartz AB (1999b) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82(5):2693–2704PubMedGoogle Scholar
  25. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, Wolpaw JR, Birbaumer N, Kubler A (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916. doi: 10.1016/j.clinph.2008.03.034 PubMedCrossRefGoogle Scholar
  26. Nunez PL, Srinivasan R (2006) Electric fields of the brain: The neurophysics of EEG, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  27. Pistohl T, Ball T, Schulze-Bonhage A, Aertsen A, Mehring C (2008) Prediction of arm movement trajectories from ECoG-recordings in humans. J Neurosci Methods 167(1):105–114. doi: 10.1016/j.jneumeth.2007.10.001 PubMedCrossRefGoogle Scholar
  28. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in CGoogle Scholar
  29. Retterer ST, Smith KL, Bjornsson CS, Turner JN, Isaacson MS, Shain W (2008) Constant pressure fluid infusion into rat neocortex from implantable microfluidic devices. J Neural Eng 5(4):385–391. doi: 10.1088/1741-2560/5/4/003 PubMedCrossRefGoogle Scholar
  30. Sanchez JC, Gunduz A, Carney PR, Principe JC (2008) Extraction and localization of mesoscopic motor control signals for human ECoG neuroprosthetics. J Neurosci Methods 167(1):63–81. doi: 10.1016/j.jneumeth.2007.04.019 PubMedCrossRefGoogle Scholar
  31. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043PubMedCrossRefGoogle Scholar
  32. Schalk G, Kubánek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007a) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264. doi:  10.1088/1741-2560/4/3/012 Google Scholar
  33. Schalk G, Kubanek J, Miller KJ, Anderson NR, Leuthardt EC, Ojemann JG, Limbrick D, Moran D, Gerhardt LA, Wolpaw JR (2007b) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4(3):264–275. doi: 10.1088/1741-2560/4/3/012 PubMedCrossRefGoogle Scholar
  34. Schalk G, Miller KJ, Anderson NR, Wilson JA, Smyth MD, Ojemann JG, Moran DW, Wolpaw JR, Leuthardt EC (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5(1):75–84. doi: 10.1088/1741-2560/5/1/008 PubMedCrossRefGoogle Scholar
  35. Schwartz AB, Moran DW (1999) Motor cortical activity during drawing movements: population representation during lemniscate tracing. J Neurophysiol 82(5):2705–2718PubMedGoogle Scholar
  36. Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8(8):2913–2927PubMedGoogle Scholar
  37. Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–220. doi: 10.1016/j.neuron.2006.09.019 PubMedCrossRefGoogle Scholar
  38. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP (2002) Instant neural control of a movement signal. Nature 416(6877):141–142PubMedCrossRefGoogle Scholar
  39. Taylor DM, Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832PubMedCrossRefGoogle Scholar
  40. Velliste M, Pere S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101. doi:  10.1038/nature06996 Google Scholar
  41. Wang W, Chan SS, Heldman DA, Moran DW (2007) Motor cortical representation of position and velocity during reaching. J Neurophysiol 97(6):4258–4270. doi: 10.1152/jn.01180.2006 PubMedCrossRefGoogle Scholar
  42. Wang W, Chan SS, Heldman DA, Moran DW (2010) Motor cortical representation of hand translation and rotation during reaching. J Neurosci 30(3):958–962. doi: 10.1523/JNEUROSCI.3742-09.2010 PubMedCrossRefGoogle Scholar
  43. Wisneski KJ, Anderson N, Schalk G, Smyth M, Moran D, Leuthardt EC (2008) Unique cortical physiology associated with ipsilateral hand movements and neuroprosthetic implications. Stroke 39(12):3351–3359. doi: 10.1161/strokeaha.108.518175 PubMedCrossRefGoogle Scholar
  44. Wolpaw JR, Birbaumer N (2005) Brain-computer interfaces for communication and control. Textbook of neural repair and rehabilitation. Cambridge University Press, CambridgeGoogle Scholar
  45. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nicholas R. Anderson
    • 1
    Email author
  • Tim Blakely
    • 2
  • Gerwin Schalk
    • 3
  • Eric C. Leuthardt
    • 4
  • Daniel W. Moran
    • 5
  1. 1.Department of Biomedical EngineeringCortech Solutions and Washington University in Saint LouisWilmingtonUSA
  2. 2.Department of Computer Science and EngineeringWashington University in Saint LouisSeattleUSA
  3. 3.Wadsworth CenterAlbanyUSA
  4. 4.School of Neurosurgery and Department of Biomedical EngineeringWashington University in Saint LouisSt. LouisUSA
  5. 5.Department of Biomedical EngineeringWashington University in Saint LouisSt. LouisUSA

Personalised recommendations