Advertisement

Experimental Brain Research

, Volume 222, Issue 3, pp 321–332 | Cite as

Solid shape discrimination from vision and haptics: natural objects (Capsicum annuum) and Gibson’s “feelies”

  • J. Farley NormanEmail author
  • Flip PhillipsEmail author
  • Jessica S. Holmin
  • Hideko F. Norman
  • Amanda M. Beers
  • Alexandria M. Boswell
  • Jacob R. Cheeseman
  • Angela G. Stethen
  • Cecilia Ronning
Research Article

Abstract

A set of three experiments evaluated 96 participants’ ability to visually and haptically discriminate solid object shape. In the past, some researchers have found haptic shape discrimination to be substantially inferior to visual shape discrimination, while other researchers have found haptics and vision to be essentially equivalent. A primary goal of the present study was to understand these discrepant past findings and to determine the true capabilities of the haptic system. All experiments used the same task (same vs. different shape discrimination) and stimulus objects (James Gibson’s “feelies” and a set of naturally shaped objects—bell peppers). However, the methodology varied across experiments. Experiment 1 used random 3-dimensional (3-D) orientations of the stimulus objects, and the conditions were full-cue (active manipulation of objects and rotation of the visual objects in depth). Experiment 2 restricted the 3-D orientations of the stimulus objects and limited the haptic and visual information available to the participants. Experiment 3 compared restricted and full-cue conditions using random 3-D orientations. We replicated both previous findings in the current study. When we restricted visual and haptic information (and placed the stimulus objects in the same orientation on every trial), the participants’ visual performance was superior to that obtained for haptics (replicating the earlier findings of Davidson et al. in Percept Psychophys 15(3):539–543, 1974). When the circumstances resembled those of ordinary life (e.g., participants able to actively manipulate objects and see them from a variety of perspectives), we found no significant difference between visual and haptic solid shape discrimination.

Keywords

Vision Haptics Shape perception Shape discrimination 

Notes

Acknowledgments

We gratefully thank Patrick Cabe for helping us to locate what is probably the only remaining set of James Gibson’s “feelies.” We also thank David B. Baker, Director of the Archives of the History of American Psychology (http://www3.uakron.edu/ahap/), for allowing us to borrow and laser-scan the feelies.

References

  1. Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M (2012) Individual variability in functional connectivity predicts performance of a perceptual task. PNAS 109(9):3516–3521PubMedCrossRefGoogle Scholar
  2. Braunstein ML (1966) Sensitivity of the observer to transformations of the visual field. J Exp Psychol 72(5):683–689PubMedCrossRefGoogle Scholar
  3. Caviness JA (1964) Visual and tactual perception of solid shape. Unpublished doctoral dissertation, Cornell UniversityGoogle Scholar
  4. Cholewiak RW, Collins AA (1997) Individual differences in the vibrotactile perception of a “simple” pattern set. Percept Psychophys 59(6):850–866PubMedCrossRefGoogle Scholar
  5. Cooke T, Jäkel F, Wallraven C, Bülthoff HH (2007) Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia 45:484–495PubMedCrossRefGoogle Scholar
  6. Cooke T, Wallraven C, Bülthoff HH (2010) Multidimensional scaling analysis of haptic exploratory procedures. ACM TAP 7(1):7Google Scholar
  7. Craddock M, Lawson R (2009) Size-sensitive perceptual representations underlie visual and haptic object recognition. PLoS One 4(11):e8009PubMedCrossRefGoogle Scholar
  8. Davidson PW, Abbott S, Gershenfeld J (1974) Influence of exploration time on haptic and visual matching of complex shape. Percept Psychophys 15(3):539–543CrossRefGoogle Scholar
  9. Edden RAE, Muthukumaraswamy SD, Freeman TCA, Singh KD (2009) Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J Neurosci 29(50):15721–15726PubMedCrossRefGoogle Scholar
  10. Fleming RW, Torralba A, Adelson EH (2004) Specular reflections and the perception of shape. J Vis 4(9):798–820. doi: 10.1167/4.9.10 PubMedCrossRefGoogle Scholar
  11. Foley JD, van Dam A, Feiner SK, Hughes JF (1996) Computer graphics: principles and practice, 2nd edn. in C., Addison-Wesley, Reading, MAGoogle Scholar
  12. Gaissert N, Wallraven C (2012) Categorizing natural objects: a comparison of the visual and the haptic modalities. Exp Brain Res 216:123–134PubMedCrossRefGoogle Scholar
  13. Gaissert N, Wallraven C, Bülthoff HH (2010) Visual and haptic perceptual spaces show high similarity in humans. J Vis 10(11):2PubMedCrossRefGoogle Scholar
  14. Gibson JJ (1962) Observations on active touch. Psychol Rev 69(6):477–491PubMedCrossRefGoogle Scholar
  15. Gibson JJ (1963) The useful dimensions of sensitivity. Am Psychol 18(1):1–15CrossRefGoogle Scholar
  16. Gibson JJ (1966) The senses considered as perceptual systems. Houghton Mifflin, BostonGoogle Scholar
  17. Goodnow JJ (1971) Eye and hand: differential memory and its effect on matching. Neuropsychologia 9(1):89–95PubMedCrossRefGoogle Scholar
  18. Haggbloom SJ, Warnick R, Warnick JE, Jones VK, Yarbrough GL, Russell TM et al (2002) The 100 most eminent psychologists of the 20th century. Rev Gen Psychol 6(2):139–152CrossRefGoogle Scholar
  19. Hilbert D, Cohn-Vossen S (1983) Geometry and the imagination. Chelsea, New YorkGoogle Scholar
  20. Kappers AML, Koenderink JJ, Lichtenegger I (1994) Haptic identification of curved surfaces. Percept Psychophys 56(1):53–61PubMedCrossRefGoogle Scholar
  21. Kappers AML, Koenderink JJ, Oudenaarden G (1997) Large scale differences between haptic and visual judgments of curvature. Perception 26(3):313–320PubMedCrossRefGoogle Scholar
  22. Koenderink JJ (1984) What does the occluding contour tell us about solid shape? Perception 13(3):321–330PubMedCrossRefGoogle Scholar
  23. Koenderink JJ (1990) Solid shape. MIT Press, Cambridge, MAGoogle Scholar
  24. Koenderink JJ (2001) Multiple visual worlds. Perception 30(1):1–7PubMedCrossRefGoogle Scholar
  25. Koenderink JJ, van Doorn AJ (1992) Surface shape and curvature scales. Image Vision Comput 10:557–564CrossRefGoogle Scholar
  26. Koenderink JJ, van Doorn AJ, Kappers AML (1992) Surface perception in pictures. Percept Psychophys 52(5):487–496PubMedCrossRefGoogle Scholar
  27. Koenderink JJ, Kappers AML, Todd JT, Norman JF, Phillips F (1996) Surface range and attitude probing in stereoscopically presented dynamic scenes. J Exp Psychol Hum Percept Perform 22(4):869–878. doi: 10.1037/0096-1523.22.4.869 PubMedCrossRefGoogle Scholar
  28. Lacey S, Peters A, Sathian K (2007) Cross-modal object recognition is viewpoint-independent. PLoS ONE 2(9):e890PubMedCrossRefGoogle Scholar
  29. Lappin JS, Norman JF, Phillips F (2011) Fechner, information, and shape perception. Atten Percept Psychophys 73(8):2353–2378. doi: 10.3758/s13414-011-0197-4 PubMedCrossRefGoogle Scholar
  30. Liu B, Todd JT (2004) Perceptual biases in the interpretation of 3D shape from shading. Vision Res 44:2135–2145PubMedCrossRefGoogle Scholar
  31. Martin A, Barnes KA, Stevens WD (2012) Spontaneous neural activity predicts individual differences in performance. PNAS 109(9):3201–3202PubMedCrossRefGoogle Scholar
  32. Norman JF, Bartholomew AN (2011) Blindness enhances tactile acuity and haptic 3-D shape discrimination. Atten Percept Psychophys 73(7):2323–2331. doi: 10.3758/s13414-011-0160-4 PubMedCrossRefGoogle Scholar
  33. Norman JF, Lappin JS (1992) The detection of surface curvatures defined by optical motion. Percept Psychophys 51(4):386–396. doi: 10.3758/BF03211632 PubMedCrossRefGoogle Scholar
  34. Norman JF, Raines SR (2002) The perception and discrimination of local 3-D surface structure from deforming and disparate boundary contours. Percept Psychophys 64(7):1145–1159. doi: 10.3758/BF03194763 PubMedCrossRefGoogle Scholar
  35. Norman JF, Wiesemann EY (2007) Aging and the perception of local surface orientation from optical patterns of shading and specular highlights. Percept Psychophys 69(1):23–31. doi: 10.3758/BF03194450 PubMedCrossRefGoogle Scholar
  36. Norman JF, Todd JT, Phillips F (1995) The perception of surface orientation from multiple sources of optical information. Percept Psychophys 57(5):629–636. doi: 10.3758/BF03213268 PubMedCrossRefGoogle Scholar
  37. Norman JF, Lappin JS, Norman HF (2000) The perception of length on curved and flat surfaces. Percept Psychophys 62(6):1133–1145. doi: 10.3758/BF03212118 PubMedCrossRefGoogle Scholar
  38. Norman JF, Norman HF, Clayton AM, Lianekhammy J, Zielke G (2004) The visual and haptic perception of natural object shape. Percept Psychophys 66(2):342–351. doi: 10.3758/BF03194883 PubMedCrossRefGoogle Scholar
  39. Norman JF, Crabtree CE, Clayton AM, Norman HF (2005) The perception of distances and spatial relationships in natural outdoor environments. Perception 34(11):1315–1324. doi: 10.1068/p5304 PubMedCrossRefGoogle Scholar
  40. Norman JF, Crabtree CE, Norman HF, Moncrief BK, Herrmann M, Kapley N (2006) Aging and the visual, haptic, and cross-modal perception of natural object shape. Perception 35(10):1383–1395. doi: 10.1068/p5504 PubMedCrossRefGoogle Scholar
  41. Norman JF, Bartholomew AN, Burton CL (2008) Aging preserves the ability to perceive 3-D object shape from static but not deforming boundary contours. Acta Psychol 129(1):198–207. doi: 10.1016/j.actpsy.2008.06.002 CrossRefGoogle Scholar
  42. Phillips F, Egan EJL, Perry BN (2009) Perceptual equivalence between vision and touch is complexity dependent. Acta Psychol 132(3):259–266. doi: 10.1016/j.actpsy.2009.07.010 CrossRefGoogle Scholar
  43. Puts NAJ, Edden RAE, Evans CJ, McGlone F, McGonigle DJ (2011) Regionally specific human GABA concentration correlates with tactile discrimination thresholds. J Neurosci 31(46):16556–16560PubMedCrossRefGoogle Scholar
  44. Todd JT, Norman JF (2003) The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure? Percept Psychophys 65(1):31–47. doi: 10.3758/BF03194781 PubMedCrossRefGoogle Scholar
  45. Todd JT, Reichel FD (1989) Ordinal structure in the visual perception and cognition of smoothly curved surfaces. Psychol Rev 96(4):643–657PubMedCrossRefGoogle Scholar
  46. Wallach H, O’Connell DN (1953) The kinetic depth effect. J Exp Psychol 45(4):205–217PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. Farley Norman
    • 1
    Email author
  • Flip Phillips
    • 2
    Email author
  • Jessica S. Holmin
    • 1
  • Hideko F. Norman
    • 1
  • Amanda M. Beers
    • 3
  • Alexandria M. Boswell
    • 4
  • Jacob R. Cheeseman
    • 1
  • Angela G. Stethen
    • 1
  • Cecilia Ronning
    • 1
  1. 1.Department of PsychologyWestern Kentucky UniversityBowling GreenUSA
  2. 2.Department of Psychology and Neuroscience ProgramSkidmore CollegeSaratoga SpringsUSA
  3. 3.Department of Psychology, Neuroscience and BehaviourMcMaster UniversityHamiltonCanada
  4. 4.Department of PsychologyUniversity of NevadaRenoUSA

Personalised recommendations