Advertisement

Experimental Brain Research

, Volume 222, Issue 3, pp 255–264 | Cite as

Reproducibility and sensitivity of detecting brain activity by simultaneous electroencephalography and near-infrared spectroscopy

  • Martin Biallas
  • Ivo Trajkovic
  • Daniel Haensse
  • Valentine Marcar
  • Martin Wolf
Research Article

Abstract

The aims were (1) to determine the sensitivity and reproducibility to detect the hemodynamic responses and optical neuronal signals to brain stimulation by near-infrared spectroscopy (NIRS) and evoked potentials by electroencephalography (EEG) and (2) to test the effect of novel filters on the signal-to-noise ratio. This was achieved by simultaneous NIRS and EEG measurements in 15 healthy adults during visual stimulation. Each subject was measured three times on three different days. The sensitivity of NIRS to detect hemodynamic responses was 55.2 % with novel filtering and 40 % without. The reproducibility in single subjects was low. For the EEG, the sensitivity was 86.4 % and the reproducibility 57.1 %. An optical neuronal signal was not detected, although novel filtering considerably reduced noise.

Keywords

Event-related optical signal (EROS) Near-infrared spectroscopy (NIRS) Near-infrared imaging (NIRI) Oxygenated hemoglobin (O2Hb, oxyHb, HbO2) Deoxygenated hemoglobin (HHb, deoxyHb, HbR) Hemoglobin Electroencephalography (EEG) Evoked potential 

Notes

Acknowledgments

The authors gratefully acknowledge the funding of the Swiss National Science Foundation. Many thanks to Felix Scholkmann for help with the figures.

References

  1. Benavente I, Tamargo P, Tajada N, Yuste V, Oliván M (2005) Flash visually evoked potentials in the newborn and their maturation during the first six months of life. Doc Ophthalmol 110(2):255–263. doi: 10.1007/s10633-005-0818-0, http://dx.doi.org/10.1007/s10633-005-0818-0
  2. Echallier J, Perrin F, Pernier J (1992) Computer-assisted placement of electrodes on the human head. Electroencephalogr Clin Neurophysiol 82(2):160–163. doi: 10.1016/0013-4694(92)90161-A, http://www.sciencedirect.com/science/article/B6SYX-482RBC6-D5/2/0491640708cb970c66a55d84c181ee0d
  3. Franceschini M, Boas D (2004) Noninvasive measurement of neuronal activity with near-infrared optical imaging. Neuroimage 21(1):372–386PubMedCrossRefGoogle Scholar
  4. Gratton G, Corballis P (1995) Removing the heart from the brain: compensation for the pulse artifact in the photon migration signal. Psychophysiology 32(3):292–299PubMedCrossRefGoogle Scholar
  5. Gratton G, Fabiani M (2010) Fast optical imaging of human brain function. Front Hum Neurosci 4:52Google Scholar
  6. Haensse D, Szabo P, Brown D, Fauchère JC, Niederer P, Bucher HU, Wolf M (2005) A new multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates. Opt Express 13(12):4525–4538. http://www.opticsexpress.org/abstract.cfm?URI=oe-13-12-4525 Google Scholar
  7. Haensse DV (2005) Changes in cerebral oxygenation in response to various stimuli in newborns as measured by functional near-infrared spectroscopy. PhD thesis, ETH Zurich, diss. ETH No. 16356Google Scholar
  8. Ikeda H, Nishijo H, Miyamoto K, Tamura R, Endo S, Ono T (1998) Generators of visual evoked potentials investigated by dipole tracing in the human occipital cortex. Neuroscience 84(3):723–739. doi: 10.1016/S0306-4522(97)00569-1, http://www.sciencedirect.com/science/article/B6T0F-3TDPWM5-8/2/4ad7fa3564d376c4bb74d2f3037bacfe Google Scholar
  9. Jaspers HH (1958) Report of the committee on methods of clinical examination in electroencephalography: 1957. Electroencephalogr Clin Neurophysiol 10(2):370–375. doi: 10.1016/0013-4694(58)90053-1, http://www.sciencedirect.com/science/article/B6SYX-482YFXP-2S/2/86bdd4bf9cfe6840aec22a5482f1ee66
  10. Kocsis L, Herman P, Eke A (2006) The modified Beer–Lambert law revisited. Phys Med Biol 51:N91PubMedCrossRefGoogle Scholar
  11. Kono T, Matsuo K, Tsunashima K, Kasai K, Takizawa R, Rogers MA, Yamasue H, Yano T, Taketani Y, Kato N (2007) Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men. Neurosci Res 57(4):504–512. doi: 10.1016/j.neures.2006.12.007, http://www.sciencedirect.com/science/article/B6T0H-4MMPNDG-1/2/21bd601882b23e3aa350f823c5f03345 Google Scholar
  12. Machielsen W, Rombouts S, Barkhof F, Scheltens P, Witter M (2000) Fmri of visual encoding: reproducibility of activation. Hum Brain Mapp 9(3):156–164PubMedCrossRefGoogle Scholar
  13. Medvedev AV, Kainerstorfer J, Borisov SV, Barbour RL, VanMeter J (2008) Event-related fast optical signal in a rapid object recognition task: Improving detection by the independent component analysis. Brain Res 1236:145–158. doi: 10.1016/j.brainres.2008.07.122, http://www.sciencedirect.com/science/article/B6SYR-4T6CTR7-6/2/b70eca0903fa2f4a6593dea0005a3904 Google Scholar
  14. Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE, Vaegan (2004) Visual evoked potentials standard (2004). Doc Ophthalmol 108(2):115–123. doi: 10.1023/B:DOOP.0000036790.67234.22, http://dx.doi.org/10.1023/B:DOOP.0000036790.67234.22
  15. Plichta M, Herrmann M, Baehne C, Ehlis AC, Richter M, Pauli P, Fallgatter A (2006) Event-related functional near-infrared spectroscopy (fnirs): are the measurements reliable? Neuroimage 31(1):116–124. doi: 10.1016/j.neuroimage.2005.12.008, http://www.sciencedirect.com/science/article/B6WNP-4J55639-1/2/e922aa2ff54ca34ae1ecd8faf70390c8
  16. Rector DM, Carter KM, Volegov PL, George JS (2005) Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. Neuroimage 26(2):619–627. doi: 10.1016/j.neuroimage.2005.02.030, http://www.sciencedirect.com/science/article/B6WNP-4FX23HF-2/2/199499aa1100bc547fe864de8cb6f4c7 Google Scholar
  17. Saager R, Berger A (2005) Direct characterization and removal of interfering absorption trends in two-layer turbid media. J Opt Soc Am A 22(9):1874–1882CrossRefGoogle Scholar
  18. Sarnthein J, Andersson M, Zimmermann MB, Zumsteg D (2009) High test-retest reliability of checkerboard reversal visual evoked potentials (vep) over 8 months. Clin Neurophysiol 120(10):1835–1840. doi: 10.1016/j.clinph.2009.08.014, http://www.sciencedirect.com/science/article/B6VNP-4X7PPTK-3/2/b53128d8df48cb41b259425acb0e7044 Google Scholar
  19. Steinbrink J, Kohl M, Obrig H, Curio G, Syr F, Thomas F, Wabnitz H, Rinneberg H, Villringer A (2000) Somatosensory evoked fast optical intensity changes detected non-invasively in the adult human head. Neurosci Lett 291(2):105–108. doi: 10.1016/S0304-3940(00)01395-1, http://www.sciencedirect.com/science/article/B6T0G-414N3J2-D/2/cd1ba920491d3535629ca44dfc6fec7a
  20. Steinbrink J, Kempf F, Villringer A, Obrig H (2005) The fast optical signal—robust or elusive when non-invasively measured in the human adult. Neuroimage 26(4):996–1008PubMedCrossRefGoogle Scholar
  21. Stepnoski R, LaPorta A, Raccuia-Behling F, Blonder G, Slusher R, Kleinfeld D (1991) Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci USA 88(21):9382PubMedCrossRefGoogle Scholar
  22. Török B, Meyer M, Wildberger H (1992) The influence of pattern size on amplitude, latency and wave form of retinal and cortical potentials elicited by checkerboard pattern reversal and stimulus onset-offset. Electroencephalogr Clin Neurophysiol/Evoked Potentials Sect 84(1):13–19. doi: 10.1016/0168-5597(92)90063-H, http://www.sciencedirect.com/science/article/B6SYY-482XXNH-8P/2/7c838caf63c4c50d92cb2ddf11066cc1
  23. Trajkovic I (2010) Modelling and filtering almost periodic signals by time-varying fourier series with application to near-infrared spectroscopy. PhD thesis, ETH Zurich, http://e-collection.library.ethz.ch/eserv/eth:2881/eth-2881-01.pdf, diss. ETH No. 19420
  24. Trajkovic I, Reller C, Wolf M, Loeliger H (2009) Modelling and filtering almost periodic signals by time-varying fourier series with application to near-infrared spectroscopy. In: Proceedings of 17th European Signal Processing Conference (EUSIPCO), pp 632–636Google Scholar
  25. Trajkovic I, Reller C, Wolf M (2012) Modelling and filtering of physiological oscillations in near-infrared spectroscopy by time-varying fourier series. In: Wolf M, Bucher HU, Rudin M, Van Huffel S, Wolf U, Bruley DF, Harrison DK (eds) Oxygen transport to tissue XXXIII, advances in experimental medicine and biology, vol 737. Springer, US, pp 307–313. http://dx.doi.org/10.1007/978-1-4614-1566-4_45
  26. Tse CY, Gordon BA, Fabiani M, Gratton G (2010) Frequency analysis of the visual steady-state response measured with the fast optical signal in younger and older adults. Biol Psychol 85(1):79–89. doi: 10.1016/j.biopsycho.2010.05.007, http://www.sciencedirect.com/science/article/B6T4T-506RN5G-2/2/f5785f9d55583c75ec9917e95a9aeb7d
  27. Wolf M, Wolf U, Choi J, Toronov V, Paunescu L, Michalos A, Gratton E (2003) Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry. Psychophysiology 40(4):521–528PubMedCrossRefGoogle Scholar
  28. Wolf M, Morren G, Haensse D, Karen T, Wolf U, Fauchère J, Bucher H (2008) Near infrared spectroscopy to study the brain: an overview. Opto-Electron Rev 16(4):413–419CrossRefGoogle Scholar
  29. Zhao H, Tanikawa Y, Gao F, Onodera Y, Sassaroli A, Tanaka K, Yamada Y (2002) Maps of optical differential pathlength factor of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR. Phys Med Biol 47:2075PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Martin Biallas
    • 1
    • 2
    • 3
  • Ivo Trajkovic
    • 1
    • 2
    • 3
  • Daniel Haensse
    • 1
    • 2
    • 3
  • Valentine Marcar
    • 4
    • 5
  • Martin Wolf
    • 1
  1. 1.Biomedical Optics Research Laboratory, Division of Neonatology, Department of Obstetrics and GynecologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Institute for Biomedical EngineeringUniversity of ZurichZurichSwitzerland
  3. 3.ETH ZurichZurichSwitzerland
  4. 4.Institute of Psychology, NeuropsychologyUniversity of ZurichZurichSwitzerland
  5. 5.Dept. Gesundheit, PhysiotherapieZHAW Zurich University of Applied SciencesWinterthurSwitzerland

Personalised recommendations