Advertisement

Experimental Brain Research

, Volume 222, Issue 3, pp 219–228 | Cite as

Balancing bistable perception during self-motion

  • Michiel van Elk
  • Olaf Blanke
Research Article

Abstract

In two experiments we investigated whether bistable visual perception is influenced by passive own body displacements due to vestibular stimulation. For this we passively rotated our participants around the vertical (yaw) axis while observing different rotating bistable stimuli (bodily or non-bodily) with different ambiguous motion directions. Based on previous work on multimodal effects on bistable perception, we hypothesized that vestibular stimulation should alter bistable perception and that the effects should differ for bodily versus non-bodily stimuli. In the first experiment, it was found that the rotation bias (i.e., the difference between the percentage of time that a CW or CCW rotation was perceived) was selectively modulated by vestibular stimulation: the perceived duration of the bodily stimuli was longer for the rotation direction congruent with the subject’s own body rotation, whereas the opposite was true for the non-bodily stimulus (Necker cube). The results found in the second experiment extend the findings from the first experiment and show that these vestibular effects on bistable perception only occur when the axis of rotation of the bodily stimulus matches the axis of passive own body rotation. These findings indicate that the effect of vestibular stimulation on the rotation bias depends on the stimulus that is presented and the rotation axis of the stimulus. Although most studies on vestibular processing have traditionally focused on multisensory signal integration for posture, balance, and heading direction, the present data show that vestibular self-motion influences the perception of bistable bodily stimuli revealing the importance of vestibular mechanisms for visual consciousness.

Keywords

Bistable perception Biological motion Vestibular processing 

Notes

Acknowledgments

We thank Bruno Herbelin for assistance in creating the 3D stimuli and Mario Prsa for assistance in setting up the experiment on the motion platform. The present study was supported by the Marie Curie Intra European Fellowship within the Seventh European Community Framework Program (IEF grant 252713 to MVE). OB is supported by the Swiss National Science foundation, the European Science Foundation, and the Fondation Bertarelli.

Supplementary material

221_2012_3209_MOESM1_ESM.asf (917 kb)
Supplementary video 1: Example video used in Experiment 1 and 2, representing a female avatar in vertical position rotating along the yaw axis (ASF 916 kb)
221_2012_3209_MOESM2_ESM.asf (569 kb)
Supplementary video 2: Example video used in Experiment 1, representing a male avatar in a vertical position rotating along the yaw axis (ASF 568 kb)
221_2012_3209_MOESM3_ESM.asf (1.1 mb)
Supplementary video 3: Example video used in Experiment 1, representing a Necker cube rotating along the yaw axis (ASF 1160 kb)
221_2012_3209_MOESM4_ESM.asf (553 kb)
Supplementary video 4: Example video used in Experiment 2, representing a female avatar in horizontal position and rotating along the roll axis (ASF 552 kb)
221_2012_3209_MOESM5_ESM.asf (561 kb)
Supplementary video 5: Example video used in Experiment 2, representing a female avatar in a vertical position and rotating along the roll axis (ASF 560 kb)
221_2012_3209_MOESM6_ESM.asf (909 kb)
Supplementary video 6: Example video used in Experiment 2, representing a female avatar in horizontal position rotating along the yaw axis (ASF 908 kb)

References

  1. Arzy S, Thut G, Mohr C, Michel CM, Blanke O (2006) Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J Neurosci 26:8074–8081. doi: 10.1523/JNEUROSCI.0745-06.2006 PubMedCrossRefGoogle Scholar
  2. Berthoz A, Israel I, Georges-Francois P, Grasso R, Tsuzuku T (1995) Spatial memory of body linear displacement: what is being stored? Science 269:95–98PubMedCrossRefGoogle Scholar
  3. Blake R, Sobel KV, James TW (2004) Neural synergy between kinetic vision and touch. Psychol Sci 15:397–402. doi: 10.1111/j.0956-7976.2004.00691.x PubMedCrossRefGoogle Scholar
  4. Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189. doi: 10.1146/annurev.neuro.26.041002.131052 PubMedCrossRefGoogle Scholar
  5. Buttner U, Henn V (1981) Circularvection—psychophysics and single-unit recordings in the monkey. Ann NY Acad Sci 374:274–283PubMedCrossRefGoogle Scholar
  6. Butz MV, Thomaschke R, Linhardt MJ, Herbort O (2010) Remapping motion across modalities: tactile rotations influence visual motion judgments. Exp Brain Res 207:1–11. doi: 10.1007/s00221-010-2420-2 PubMedCrossRefGoogle Scholar
  7. Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P (2005) Action observation and acquired motor skills: an FMRI study with expert dancers. Cereb Cortex 15:1243–1249. doi: 10.1093/cercor/bhi007 PubMedCrossRefGoogle Scholar
  8. Carriot J, Bryan A, DiZio P, Lackner JR (2011) The oculogyral illusion: retinal and oculomotor factors. Exp Brain Res 209:415–423. doi: 10.1007/s00221-011-2567-5 PubMedCrossRefGoogle Scholar
  9. Chiavarino C, Apperly IA, Humphreys GW (2007) Exploring the functional and anatomical bases of mirror-image and anatomical imitation: the role of the frontal lobes. Neuropsychologia 45:784–795. doi: 10.1016/j.neuropsychologia.2006.08.007 PubMedCrossRefGoogle Scholar
  10. Chowdhury SA, Takahashi K, DeAngelis GC, Angelaki DE (2009) Does the middle temporal area carry vestibular signals related to self-motion? J Neurosci 29:12020–12030. doi: 10.1523/JNEUROSCI.0004-09.2009 PubMedCrossRefGoogle Scholar
  11. Clark B, Stewart I (1968) Comparison of sensitivity for the perception of bodily rotation and the oculogyral illusion. Percept Psychophys 3:253–256CrossRefGoogle Scholar
  12. Ferre ER, Bottini G, Haggard P (2011) Vestibular modulation of somatosensory perception. Eur J Neurosci 34:1337–1344. doi: 10.1111/j.1460-9568.2011.07859.x PubMedCrossRefGoogle Scholar
  13. Graybiel A, Hupp D (1946) The oculo-gyral illusion: a form of apparent motion which may be observed following stimulation of the semicircular canals. J Avian Med Surg 17:3–27Google Scholar
  14. Green AM, Angelaki DE (2010) Multisensory integration: resolving sensory ambiguities to build novel representations. Curr Opin Neurobiol 20:353–360. doi: 10.1016/j.conb.2010.04.009 PubMedCrossRefGoogle Scholar
  15. Hirai M, Chang DH, Saunders DR, Troje NF (2011) Body configuration modulates the usage of local cues to direction in biological-motion perception. Psychol Sci 22:1543–1549. doi: 10.1177/0956797611417257 PubMedCrossRefGoogle Scholar
  16. Ionta S, Heydrich L, Lenggenhager B et al (2011) Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron 70:363–374. doi: 10.1016/j.neuron.2011.03.009 PubMedCrossRefGoogle Scholar
  17. Jackson S, Cummins F, Brady N (2008) Rapid perceptual switching of a reversible biological figure. PLoS ONE 3:e3982. doi: 10.1371/journal.pone.0003982 PubMedCrossRefGoogle Scholar
  18. Klopfer DS (1991) Apparent reversals of a rotating mask: a new demonstration of cognition in perception. Percept Psychophys 49:522–530PubMedCrossRefGoogle Scholar
  19. Konkle T, Wang Q, Hayward V, Moore CI (2009) Motion aftereffects transfer between touch and vision. Curr Biol 19:745–750. doi: 10.1016/j.cub.2009.03.035 PubMedCrossRefGoogle Scholar
  20. Lenggenhager B, Tadi T, Metzinger T, Blanke O (2007) Video ergo sum: manipulating bodily self-consciousness. Science 317:1096–1099. doi: 10.1126/science.1143439 PubMedCrossRefGoogle Scholar
  21. Lenggenhager B, Lopez C, Blanke O (2008) Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations. Exp Brain Res 184:211–221. doi: 10.1007/s00221-007-1095-9 PubMedCrossRefGoogle Scholar
  22. Liu S, Angelaki DE (2009) Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J Neurosci 29:8936–8945. doi: 10.1523/JNEUROSCI.1607-09.2009 PubMedCrossRefGoogle Scholar
  23. Lobmaier JS, Mast FW (2007) The Thatcher illusion: rotating the viewer instead of the picture. Perception 36:537–546PubMedCrossRefGoogle Scholar
  24. Lopez C, Blanke O (2011) The thalamocortical vestibular system in animals and humans. Brain Res Rev 67:119–146. doi: 10.1016/j.brainresrev.2010.12.002 PubMedCrossRefGoogle Scholar
  25. Lopez C, Bachofner C, Mercier M, Blanke O (2009) Gravity and observer’s body orientation influence the visual perception of human body postures. J Vision 9(1):1–14. doi: 10.1167/9.5.1 CrossRefGoogle Scholar
  26. Lopez C, Lenggenhager B, Blanke O (2010) How vestibular stimulation interacts with illusory hand ownership. Conscious Cogn 19:33–47. doi: 10.1016/j.concog.2009.12.003 PubMedCrossRefGoogle Scholar
  27. Meltzoff AN, Moore K (1997) Explaining facial imitation: a theoretical model. Early Dev Parenting 6:179–192CrossRefGoogle Scholar
  28. Mergner T, Rottler G, Kimmig H, Becker W (1992) Role of vestibular and neck inputs for the perception of object motion in space. Exp Brain Res 89:655–668PubMedCrossRefGoogle Scholar
  29. Miller SM, Liu GB, Ngo TT, Hooper G, Riek S, Carson RG, Pettigrew JD (2000) Interhemispheric switching mediates perceptual rivalry. Curr Biol 10:383–392PubMedCrossRefGoogle Scholar
  30. Mitsumatsu H (2009) Voluntary action affects perception of bistable motion display. Perception 38:1522–1535PubMedCrossRefGoogle Scholar
  31. Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2007) Caloric vestibular stimulation reveals discrete neural mechanisms for coherence rivalry and eye rivalry: a meta-rivalry model. Vision Res 47:2685–2699. doi: 10.1016/j.visres.2007.03.024 PubMedCrossRefGoogle Scholar
  32. Ngo TT, Liu GB, Tilley AJ, Pettigrew JD, Miller SM (2008) The changing face of perceptual rivalry. Brain Res Bull 75:610–618. doi: 10.1016/j.brainresbull.2007.10.006 PubMedCrossRefGoogle Scholar
  33. Parsons LM (1987) Imagined spatial transformation of one’s body. J Exp Psychol Gen 116:172–191PubMedCrossRefGoogle Scholar
  34. Reed CL, Stone VE, Bozova S, Tanaka J (2003) The body-inversion effect. Psychol Sci 14:302–308PubMedCrossRefGoogle Scholar
  35. Schütz-Bosbach S, Prinz W (2007) Perceptual resonance: action-induced modulation of perception. Trends Cogn Sci 11:349–355. doi: 10.1016/j.tics.2007.06.005 PubMedCrossRefGoogle Scholar
  36. Sebanz N, Shiffrar M (2009) Detecting deception in a bluffing body: the role of expertise. Psychonom Bull Rev 16:170–175. doi: 10.3758/PBR.16.1.170 CrossRefGoogle Scholar
  37. Serino A, De Filippo L, Casavecchia C, Coccia M, Shiffrar M, Ladavas E (2010) Lesions to the motor system affect action perception. J Cogn Neurosci 22:413–426. doi: 10.1162/jocn.2009.21206 PubMedCrossRefGoogle Scholar
  38. Tadi T, Overney LS, Blanke O (2009) Three sequential brain activations encode mental transformations of upright and inverted human bodies: a high resolution evoked potential study. Neuroscience 159:1316–1325. doi: 10.1016/j.neuroscience.2009.02.012 PubMedCrossRefGoogle Scholar
  39. Tadin D, Silvanto J, Pascual-Leone A, Battelli L (2011) Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5. J Neurosci 31:1279–1283. doi: 10.1523/JNEUROSCI.4121-10.2011 PubMedCrossRefGoogle Scholar
  40. Tailby C, Majaj NJ, Movshon JA (2010) Binocular integration of pattern motion signals by MT neurons and by human observers. J Neurosci 30:7344–7349. doi: 10.1523/JNEUROSCI.4552-09.2010 PubMedCrossRefGoogle Scholar
  41. Thirioux B, Mercier MR, Jorland G, Berthoz A, Blanke O (2010) Mental imagery of self-location during spontaneous and active self-other interactions: an electrical neuroimaging study. J Neurosci 30:7202–7214. doi: 10.1523/JNEUROSCI.3403-09.2010 PubMedCrossRefGoogle Scholar
  42. Troje NF, McAdam M (2010) The viewing-from-above bias and the silhouette illusion. i-Perception 1:143–148. doi: 10.1068/i0408 CrossRefGoogle Scholar
  43. Troje NF, Westhoff C (2006) The inversion effect in biological motion perception: evidence for a “life detector”? Curr Biol 16:821–824. doi: 10.1016/j.cub.2006.03.022 PubMedCrossRefGoogle Scholar
  44. Vaina LM, Solomon J, Chowdhury S, Sinha P, Belliveau JW (2001) Functional neuroanatomy of biological motion perception in humans. P Natl Acad Sci USA 98:11656–11661. doi: 10.1073/pnas.191374198 CrossRefGoogle Scholar
  45. van Elk M, van Schie HT, Hunnius S, Vesper C, Bekkering H (2008) You’ll never crawl alone: neurophysiological evidence for experience-dependent motor resonance in infancy. Neuroimage 43:808–814. doi: 10.1016/j.neuroimage.2008.07.057 PubMedCrossRefGoogle Scholar
  46. Wohlschlager A (2000) Visual motion priming by invisible actions. Vision Res 40:925–930PubMedCrossRefGoogle Scholar
  47. Wohlschläger A, Gattis M, Bekkering H (2003) Action generation and action perception in imitation: an instance of the ideomotor principle. Philos T R Soc Lond 358:501–515CrossRefGoogle Scholar
  48. Young LR, Dichgans J, Murphy R, Brandt T (1973) Interaction of optokinetic and vestibular stimuli in motion perception. Acta Oto-Laryngol 76:24–31CrossRefGoogle Scholar
  49. Zacks J, Rypma B, Gabrieli JD, Tversky B, Glover GH (1999) Imagined transformations of bodies: an fMRI investigation. Neuropsychologia 37:1029–1040PubMedCrossRefGoogle Scholar
  50. Zacks J, Vettel JM, Michelon P (2003) Imagined viewer and object rotations dissociated with event-related FMRI. J Cogn Neurosci 15:1002–1018. doi: 10.1162/089892903770007399 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Laboratory of Cognitive Neuroscience, Brain Mind InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of NeurologyUniversity HospitalGenevaSwitzerland
  3. 3.Center for NeuroprostheticsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations