Experimental Brain Research

, Volume 221, Issue 1, pp 43–49 | Cite as

Number generation bias after action observation

  • Arnaud Badets
  • Cédric A. Bouquet
  • François Ric
  • Mauro Pesenti
Research Article


Recent studies have demonstrated that conceptual and abstract knowledge could rely on and could be influenced by sensory-motor processing of usual goal-directed actions. In line with this, interactions have been reported between number magnitude and finger grip with, for example, small-magnitude numbers priming grip closure and large-magnitude numbers priming grip aperture. Here, we assessed whether observing a closing or opening grip was able to influence the magnitude of the numbers produced in a random number generation task, and we tested whether this effect was specific to biological hand actions by using non-biological fake hands with the same closure or aperture amplitude. The participants were asked to produce as randomly as possible numbers between 1 and 10 after they observed a change in posture (i.e. grip closing or grip opening) or in colour (i.e. red or blue hand). The results revealed that the participants produced more often small numbers than large ones after observing a grip closing, whereas they produced equally often small and large numbers after observing a grip opening or colour changes. Importantly, this effect was only present for the biological hands but not for the non-biological fake hands. This finding demonstrates that observing a biological grip closing conveys small-magnitude information, which, in turn, influences the mental selection of a numerical response. We discuss our results in the light of the internal random generator process proposed in the domain of numerical cognition and argue that number semantics is stored with a code governed by sensory-motor mechanisms.


Magnitude Closing grip Numbers Action observation 



La Maison des Sciences de l’Homme et de la Société de Poitiers (France) financially supported this study. We are grateful to Yves Almecija (CNRS-UMR-7295) for his valuable comments for the editing of the pictures used in the present study. MP is a research associate at the National Fund for Scientific Research (Belgium).


  1. Adams JA (1986) Use of model’s knowledge of results to increase the observer’s performance. J Hum Mov Stud 12:89–98Google Scholar
  2. Andres M, Davare M, Pesenti M, Olivier E, Seron X (2004) Number magnitude and grip aperture interaction. NeuroReport 15:2773–2777PubMedGoogle Scholar
  3. Badets A, Pesenti M (2010) Creating number semantics through finger movement perception. Cognition 115:46–53PubMedCrossRefGoogle Scholar
  4. Badets A, Pesenti M (2011) Finger-number interaction an ideomotor account. Exp Psychol 58:287–292PubMedCrossRefGoogle Scholar
  5. Badets A, Andres M, Di Luca S, Pesenti M (2007) Number magnitude potentiates action judgements. Exp Brain Res 180:525–534PubMedCrossRefGoogle Scholar
  6. Barsalou LW (1999) Perceptual symbol systems. Behav Brain Sci 22:577–609PubMedGoogle Scholar
  7. Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund HJ (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286PubMedCrossRefGoogle Scholar
  8. Bueti D, Walsh V (2009) The parietal cortex and the representation of time, space, number and other magnitudes. Philos Trans R Soc Lond B Biol Sci 364:1831–1840PubMedCrossRefGoogle Scholar
  9. Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435PubMedGoogle Scholar
  10. Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189PubMedCrossRefGoogle Scholar
  11. Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol Gen 122:371–396CrossRefGoogle Scholar
  12. Goodale MA, Milner AD (2004) Sight unseen: an exploration of consciousness and unconscious vision. Oxford University Press, OxfordGoogle Scholar
  13. Grezes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12:1–19PubMedCrossRefGoogle Scholar
  14. Hartmann M, Grabherr L, Mast FW (2011) Moving along the mental number line: Interactions between whole-body motion and numerical cognition. J Exp Psychol Hum Percept Perform. doi: 10.1037/a0026706
  15. Kunde W, Koch I, Hoffmann J (2004) Anticipated action effects affect the selection, initiation, and execution of actions. Q J Exp Psychol A 57:87–106PubMedCrossRefGoogle Scholar
  16. Lindemann O, Abolafia JA, Girardi G, Bekkering H (2007) Getting a grip on numbers: numerical magnitude priming in object grasping. J Exp Psychol Hum Percept Perform 33:1400–1409PubMedCrossRefGoogle Scholar
  17. Loetscher T, Brugger P (2007) Exploring number space by random digit generation. Exp Brain Res 180:655–665PubMedCrossRefGoogle Scholar
  18. Loetscher T, Schwarz U, Schubiger M, Brugger P (2008) Head turns bias the brain’s internal random generator. Curr Biol 18:R60–R62PubMedCrossRefGoogle Scholar
  19. Loetscher T, Bockisch CJ, Nicholls MER, Brugger P (2010) Eye position predicts what number you have in mind. Curr Biol 20:R264–R265PubMedCrossRefGoogle Scholar
  20. Malfait N, Valyear KF, Culham JC, Anton J-L, Brown LE, Gribble PL (2010) fMRI Activation during observation of others’ reach errors. J Cogn Neurosci 22:1493–1503PubMedCrossRefGoogle Scholar
  21. Pesenti M, Thioux M, Seron X, De Volder A (2000) Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: a PET study. J Cogn Neurosci 12:461–479PubMedCrossRefGoogle Scholar
  22. Song J-H, Nakayama K (2008) Numeric comparison in a visually-guided manual reaching task. Cognition 106:994–1003PubMedCrossRefGoogle Scholar
  23. Van der Linden M, Beerten A, Pesenti M (1998) Age-related differences in random generation. Brain Cogn 38:1–16PubMedCrossRefGoogle Scholar
  24. Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7:483–488PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Arnaud Badets
    • 1
    • 5
  • Cédric A. Bouquet
    • 2
  • François Ric
    • 3
  • Mauro Pesenti
    • 4
  1. 1.Centre National de la Recherche Scientifique (CNRS-UMR-7295)PoitiersFrance
  2. 2.Centre de Recherches sur la Cognition et l’Apprentissage, UMR-7295Université de PoitiersPoitiersFrance
  3. 3.Laboratoire de Psychologie Santé et Qualité de VieUniversité de Bordeaux SegalenBordeauxFrance
  4. 4.Institut de Recherches en Sciences Psychologiques et Institut de NeuroscienceUniversité catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Centre de Recherches sur la Cognition et l’Apprentissage CNRS, UMR-7295Maison des Sciences de l’Homme et de la SociétéPoitiersFrance

Personalised recommendations