Experimental Brain Research

, Volume 218, Issue 2, pp 305–313 | Cite as

Introduction of a method for quantitative evaluation of spontaneous motor activity development with age in infants

  • Catherine Disselhorst-Klug
  • Franziska Heinze
  • Nico Breitbach-Faller
  • Thomas Schmitz-Rode
  • Günter Rau
Research Article


Coordination between perception and action is required to interact with the environment successfully. This is already trained by very young infants who perform spontaneous movements to learn how their body interacts with the environment. The strategies used by the infants for this purpose change with age. Therefore, very early progresses in action control made by the infants can be investigated by monitoring the development of spontaneous motor activity. In this paper, an objective method is introduced, which allows the quantitative evaluation of the development of spontaneous motor activity in newborns. The introduced methodology is based on the acquisition of spontaneous movement trajectories of the feet by 3D movement analysis and subsequent calculation of specific movement parameters from them. With these movement-based parameters, it was possible to provide an objective description of age-dependent developmental steps in healthy newborns younger than 6 months. Furthermore, it has been shown that pathologies like infantile cerebral palsy influence development of motor activity significantly. Since the introduced methodology is objective and quantitative, it is suitable to monitor how newborns train their cognitive processes, which will enable them to cope with their environment by motor interaction.


Maturation of motor activity Spontaneous movement development Age-dependent parameters Infantile cerebral palsy Movement analysis 



The authors gratefully acknowledge the financial support provided by the German Research Council (Deutsche Forschungsgemeinschaft DFG, DI 596/5-1).

Conflict of interest

None declared.


  1. Adde L, Rygg M, Lossius K, Oberg GK, Stoen R (2007) General movement assessment: predicting cerebral palsy in clinical practise. Early Hum Dev 83:13–18. doi: 10.1016/j.earlhumdev.2006.03.005 PubMedCrossRefGoogle Scholar
  2. Albers S, Jorch G (1994) Prognostic-significance of spontaneous motility in very immature preterm infants under intensive-care treatment. Biol Neonate 66:182–187PubMedCrossRefGoogle Scholar
  3. Bos AF, van Loon AJ, Martijn A, van Asperen RM, Okken A, Prechtl HFR (1997) Spontaneous motility in preterm, small-for-gestational age infants I. Quantitative aspects. Early Hum Dev 50:115–129PubMedCrossRefGoogle Scholar
  4. Bos AF, Martijn A, van Asperen RM, Hadders-Algra M, Okken A, Prechtl HFR (1998) Qualitative assessment of general movements in high-risk preterm infants with chronic lung disease requiring dexamethasone therapy. J Pediatr 132:300–306PubMedCrossRefGoogle Scholar
  5. Bos AF, Dibiasi J, Tiessen AH, Bergman KA (2002) Treating preterm infants at risk for chronic lung disease with dexamethasone leads to an impaired quality of general movements. Biol Neonate 82:155–158. doi: 10.1159/000063612 PubMedCrossRefGoogle Scholar
  6. Bruggink JLM, Van Braeckel KN, Bos AF (2010) The early motor repertoire of children born preterm is associated with intelligence at school age. Pediatrics 125:E1356–E1363. doi: 10.1542/peds.2009-2117 PubMedCrossRefGoogle Scholar
  7. Burger M, Louw QA (2009) The predictive validity of general movements—a systematic review. Eur J Paediatr Neurol 13:408–420. doi: 10.1016/j.ejpn.2008.09.004 PubMedCrossRefGoogle Scholar
  8. Butcher PR, van Braeckel K, Bouma A, Einspieler C, Stremmelaar EF, Bos AF (2009) The quality of preterm infants’ spontaneous movements: an early indicator of intelligence and behaviour at school age. J Child Psychol Psychiatry 50:920–930. doi: 10.1111/j.1469-7610.2009.02066.x PubMedCrossRefGoogle Scholar
  9. Cioni G, Ferrari F, Einspieler C, Paolicelli PB, Barbani MT, Prechtl HFR (1997a) Comparison between observation of spontaneous movements and neurologic examination in preterm infants. J Pediatr 130:704–711PubMedCrossRefGoogle Scholar
  10. Cioni G, Prechtl HFR, Ferrari F, Paolicelli PB, Einspieler C, Roversi MF (1997b) Which better predicts later outcome in fullterm infants: quality of general movements or neurological examination? Early Hum Dev 50:71–85PubMedCrossRefGoogle Scholar
  11. Cioni G, Bos AF, Einspieler C, Ferrari F, Martijn A, Paolicelli PB, Rapisardi G, Roversi MF, Prechtl HFR (2000) Early neurological signs in preterm infants with unilateral intraparenchymal echodensity. Neuropediatrics 31(5):240–251Google Scholar
  12. Corbetta D, Bell MA (2009) Embodied mind and learning in infancy: a tribute to Esther Thelen-Embodied changes in reaching and the brain as infants learn to walk. J Sport Exerc Psychol 31:S10–S11Google Scholar
  13. Corbetta D, Thelen E, Johnson K (2000) Motor constraints on the development of perception-action matching in infant reaching. Infant Behav Dev 23:351–374CrossRefGoogle Scholar
  14. Darsaklis V, Snider LM, Majnemer A, Mazer B (2011) Predictive validity of Prechtl’s method on the qualitative assessment of general movements: a systematic review of the evidence. Dev Med Child Neurol 53:896–906. doi: 10.1111/j.1469-8749.2011.04017.x PubMedCrossRefGoogle Scholar
  15. Einspieler C, Prechtl HFR (2005) Prechtl’s assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system. Ment Retard Dev Disabil Res Rev 11:61–67. doi: 10.1002/Mrdd.20051 PubMedCrossRefGoogle Scholar
  16. Einspieler C, Prechtl HFR, Ferrari F, Cioni G, Bos AF (1997) The qualitative assessment of general movements in preterm, term and young infants—review of the methodology. Early Hum Dev 50:47–60PubMedCrossRefGoogle Scholar
  17. Einspieler C, Cioni G, Paolicelli PB et al (2002) The early markers for later dyskinetic cerebral palsy are different from those for spastic cerebral palsy. Neuropediatrics 33:73–78PubMedCrossRefGoogle Scholar
  18. Ferrari F, Cioni G, Einspieler C et al (2002) Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch Pediatr Adolesc Med 156:460–467PubMedGoogle Scholar
  19. Galloway JC, Thelen E (2004) Feet first: object exploration in young infants. Infant Behav Dev 27:107–112CrossRefGoogle Scholar
  20. Groen SE, de Blecourt ACE, Postema K, Hadders-Algra M (2005) General movements in early infancy predict neuromotor development at 9 to 12 years of age. Dev Med Child Neurol 47:731–738. doi: 10.1017/S0012162205001544 PubMedCrossRefGoogle Scholar
  21. Guzzetta A, Mercuri E, Rapisardi G et al (2003) General movements detect early signs of hemiplegia in term infants with neonatal cerebral infarction. Neuropediatrics 34:61–66PubMedCrossRefGoogle Scholar
  22. Hadders-Algra M (2004) General movements: a window for early identification of children at high risk for developmental disorders. J Pediatr 145:S12–S18. doi: 10.1016/j.jpeds.2004.05.017 PubMedCrossRefGoogle Scholar
  23. Hadders-Algra M, Groothuis AMC (1999) Quality of general movements in infancy is related to neurological dysfunction, ADHD, and aggressive behaviour. Dev Med Child Neurol 41(6):381–391Google Scholar
  24. Heinze F, Hesels K, Breitbach-Faller N, Schmitz-Rode T, Disselhorst-Klug C (2010) Movement analysis by accelerometry of newborns and infants for the early detection of movement disorders due to infantile cerebral palsy. Med Biol Eng Comput 48:765–772. doi: 10.1007/s11517-010-0624-z PubMedCrossRefGoogle Scholar
  25. Meinecke L, Breitbach-Faller N, Bartz C, Damen R, Rau G, Disselhorst-Klug C (2006) Movement analysis in the early detection of newborns at risk for developing spasticity due to infantile cerebral palsy. Hum Mov Sci 25:125–144. doi: 10.1016/j.humov.2005.09.012 PubMedCrossRefGoogle Scholar
  26. Nakajima Y, Einspieler C, Marschik PB, Bos AF, Prechtl HFR (2006) Does a detailed assessment of poor repertoire general movements help to identify those infants who will develop normally? Early Hum Dev 82:53–59. doi: 10.1016/j.earlhumdev.2005.07.010 PubMedCrossRefGoogle Scholar
  27. Palmer FB (2004) Strategies for the early diagnosis of cerebral palsy. J Pediatr 145:S8–S11. doi: 10.1016/j.jpeds.2004.05.016 PubMedCrossRefGoogle Scholar
  28. Paro-Panjan D, Neubauer D, Kodric J, Bratanic B (2005) Amiel-Tison neurological assessment at term age: clinical application, correlation with other methods, and outcome at 12 to 15 months. Dev Med Child Neurol 47:19–26. doi: 10.1017/S0012162205000046 PubMedCrossRefGoogle Scholar
  29. Platt MJ, Cans C, Johnson A, Surman G, Topp M, Torrioli MG, Krageloh-Mann I (2007) Trends in cerebral palsy among infants of very low birthweight (<1500 g) or born prematurely (<32weeks) in 16 European centres: a database study. Lancet 369:43–50. doi: 10.1016/S0140-6736(07)60030-0 PubMedCrossRefGoogle Scholar
  30. Prechtl HFR (1990) Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum Dev 23:151–158PubMedCrossRefGoogle Scholar
  31. Prechtl HFR (1997) State of the art of a new functional assessment of the young nervous system. An early predictor of cerebral palsy. Early Hum Dev 50:1–11PubMedCrossRefGoogle Scholar
  32. Prechtl HFR (2001) General movement assessment as a method of developmental neurology: new paradigms and their consequences—the 1999 Ronnie Mac Keith lecture. Dev Med Child Neurol 43:836–842PubMedCrossRefGoogle Scholar
  33. Prechtl HFR, Einspieler C, Cioni G, Bos AF, Ferrari F, Sontheimer D (1997) An early marker for neurological deficits after perinatal brain lesions. Lancet 349:1361–1363PubMedCrossRefGoogle Scholar
  34. Rau G, Disselhorst-Klug C, Schmidt R (2000) Movement biomechanics goes upwards: from the leg to the arm. J Biomech 33:1207–1216PubMedCrossRefGoogle Scholar
  35. Rochat P (1998) Self-perception and action in infancy. Exp Brain Res 123:102–109PubMedCrossRefGoogle Scholar
  36. Rovee-Collier C (1999) The development of infant memory. Curr Dir Psychol Sci 8:80–85CrossRefGoogle Scholar
  37. Rovee-Collier CK, Sullivan MW, Enright M, Lucas D, Fagen JW (1980) Reactivation of infant memory. Science 208:1159–1161PubMedCrossRefGoogle Scholar
  38. Seme-Ciglenecki P (2003) Predictive value of assessment of general movements for neurological development of high-risk preterm infants: comparative study. Croat Med J 44:721–727PubMedGoogle Scholar
  39. Thelen E (1995) Origins of origins of motor control. Behav Brain Sci 18:780–783CrossRefGoogle Scholar
  40. Yokochi K, Shimabukuro S, Kodama M, Kodama K, Hosoe A (1993) Motor function of infants with athetoid cerebral palsy. Dev Med Child Neurol 35:909–916PubMedCrossRefGoogle Scholar
  41. Yokochi K, Yokochi M, Kodama K (1995) Motor function of infants with spastic hemiplegia. Brain Dev 17:42–48PubMedCrossRefGoogle Scholar
  42. Zuk L, Harel S, Leitner Y, Fattal-Valevski A (2004) Neonatal general movements: an early predictor for neurodevelopmental outcome in infants with intrauterine growth retardation. J Child Neurol 19:14–18PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Catherine Disselhorst-Klug
    • 1
  • Franziska Heinze
    • 1
  • Nico Breitbach-Faller
    • 2
  • Thomas Schmitz-Rode
    • 3
  • Günter Rau
    • 4
  1. 1.Department of Rehabilitation and Prevention Engineering, Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  2. 2.Social Pediatric Centre, Klinikum EsslingenEsslingenGermany
  3. 3.Institute of Applied Medical EngineeringRWTH Aachen UniversityAachenGermany
  4. 4.Helmholtz Institute for Biomedical EngineeringRWTH Aachen UniversityAachenGermany

Personalised recommendations