Experimental Brain Research

, Volume 217, Issue 2, pp 261–271

Functional synchronization in repetitive bimanual prehension movements

  • Marianne I. Christel
  • Marc Jeannerod
  • Peter H. Weiss
Research Article


To examine the mechanisms of functional bimanual synchronization in goal-directed movements, we studied the movement kinematics of motorically unimpaired subjects while they performed repetitive prehension movements (either unimanually or bimanually) to small food items. Compared to unimanual conditions, bimanual movement execution yielded a significantly prolonged mouth contact phase. We hypothesized that this threefold prolongation led to a proper functional synchronization of the movement onsets of both hands at the beginning of each new movement cycle. That these temporal adjustments occurred in the movement phase with maximal haptic input points to the importance of sensory feedback for bimanual coordination. These results are discussed with respect to the important role of sensory feedback in the timing of coordinated bimanual movements. Furthermore, we propose that time-based coordinating schemas, which are implemented by the cerebellum and the posterior parietal cortex using sensory feedback, underlie functional inter-limb coordination.


Bimanual coordination Functional synchronization Prehension movements Sensory feedback Cerebellum Parietal cortex 


  1. Aschersleben G, Gehrke J, Prinz W (2001) Tapping with peripheral nerve block. A role for tactile feedback in the timing of movements. Exp Brain Res 136:331–339PubMedCrossRefGoogle Scholar
  2. Blakemore SJ, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 12:1879–1884PubMedCrossRefGoogle Scholar
  3. Carson RG, Byblow WD, Goodman D (1994) The dynamic substructure of bimanual coordination. In: Swinnen SP et al (eds) Interlimb coordination: neural, dynamical and cognitive constraints. Academic Press, Orlando, pp 319–337Google Scholar
  4. Castiello U, Bennett KMB, Stelmach GE (1993) The bilateral reach to grasp movement. Behav Brain Res 56:43–57PubMedCrossRefGoogle Scholar
  5. Cavina-Pratesi C, Ietswaart M, Humphreys GW, Lestou V, Milner AD (2010) Impaired grasping in a patient with optic ataxia: primary visuomotor deficit or secondary consequence of misreaching? Neuropsychologia 48:226–234PubMedCrossRefGoogle Scholar
  6. Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212PubMedCrossRefGoogle Scholar
  7. Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating prehension movements to a visual target. Nat Neurosci 2:563–567PubMedCrossRefGoogle Scholar
  8. Dohle C, Ostermann G, Hefter H, Freund HJ (2000) Different coupling for the reach and grasp components in bimanual prehension movements. Neuroreport 11:3787–3791PubMedCrossRefGoogle Scholar
  9. Fink GR (2001) What the brain needs for managing both hands at the same time. Neuroreport 12:69CrossRefGoogle Scholar
  10. Fink GR, Marshall JC, Halligan PW, Frith CD, Driver J, Frackowiak RS, Dolan RJ (1999) The neural consequences of conflict between intention and the senses. Brain 122:497–512PubMedCrossRefGoogle Scholar
  11. Freund HJ (2001) The parietal lobe as a sensorimotor interface: a prespective from clinical and neuroimaging data. Neuroimage 14:S142–S146PubMedCrossRefGoogle Scholar
  12. Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JA (2000) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12:71–84PubMedCrossRefGoogle Scholar
  13. Gardner EP, Babu KS, Ghosh S, Sherwood A, Chen J (2007) Neurophysiology of prehension. III. Representation of object features in posterior parietal cortex of the macaque monkey. J Neurophysiol 98:3708–3730PubMedCrossRefGoogle Scholar
  14. Gentilucci M, Toni I, Chieffi S, Pavesi G (1994) The role of proprioception in the control of prehension movements: a kinematic study in a peripherally deafferented patient and in normal subjects. Exp Brain Res 99:483–500PubMedCrossRefGoogle Scholar
  15. Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204:475–491PubMedCrossRefGoogle Scholar
  16. Hoff B, Arbib MA (1993) Models of trajectory formation and temporal interaction of reach and grasp. J Motor Behav 25:175–192CrossRefGoogle Scholar
  17. Jackson GM, Jackson SR, Husain M, Harvey M, Kramer T, Dow L (2000) The coordination of bimanual prehension movements in a centrally deafferented patient. Brain 123(2):380–393PubMedCrossRefGoogle Scholar
  18. Jeannerod M, Michel F, Prablanc C (1984) The control of hand movements in a case of hemianaesthesia following a parietal lesion. Brain 107:899–920PubMedCrossRefGoogle Scholar
  19. Maslovat D, Chua R, Lee TD, Franks IM (2006) Anchoring strategies for learning a bimanual coordination pattern. J Mot Behav 38(2):101–117PubMedCrossRefGoogle Scholar
  20. Mechsner F, Kerzel D, Knoblich G, Prinz W (2001) Perceptual basis of bimanual coordination. Nature 414:69–73PubMedCrossRefGoogle Scholar
  21. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRefGoogle Scholar
  22. Perrig S, Kazennikov O, Wiesendanger M (1999) Time structure of a goal-directed bimanual skill and its dependence on task constraints. Behav Brain Res 103:95–104PubMedCrossRefGoogle Scholar
  23. Sanes JN, Truccolo W (2003) Motor “binding”: do functional assemblies in primary motor cortex have a role? Neuron 38(1):3–5PubMedCrossRefGoogle Scholar
  24. Schmidt RC, Shaw BK, Turvey MT (1993) Coupling dynamics in interlimb coordination. J Exp Psychol Hum Percept Perform 19:397–415PubMedCrossRefGoogle Scholar
  25. Schoener G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520CrossRefGoogle Scholar
  26. Serrien DJ, Wiesendanger M (2000) Temporal control of a bimanual task in patients with cerebellar dysfunction. Neuropsychologia 38:558–565PubMedCrossRefGoogle Scholar
  27. Serrien DJ, Burgunder JM, Wiesendanger M (2001) Grip force scaling and sequencing of events during a manipulative task in Huntington’s disease. Neuropsychologia 39:734–741PubMedCrossRefGoogle Scholar
  28. Siebner HR, Peller M, Takano B, Conrad B (2001) New insights into brain function by combination of transcranial magnetic stimulation and functional brain mapping. Nervenarzt 72(4):320–326PubMedCrossRefGoogle Scholar
  29. Song YG, Yoo KS, Park KW, Park JH (2010) Coordinative and limb-specific control of bimanual movements in patients with Parkinson’s disease and cerebellar degeneration. Neurosci Lett 482:146–150PubMedCrossRefGoogle Scholar
  30. Stelmach GE, Worringham CJ (1988) The control of bimanual aiming movements in Parkinson’s disease. J Neurol Neurosurg Psychiatr 51:223–231PubMedCrossRefGoogle Scholar
  31. Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev 3:350–361Google Scholar
  32. Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8(1):18–25PubMedCrossRefGoogle Scholar
  33. Swinnen SP, Walter CB, Shapiro DC (1988) The coordination of limb movements with different kinematic patterns. Brain Cogn 8:326–347PubMedCrossRefGoogle Scholar
  34. Swinnen SP, Dounskaia N, Levin O, Duysens J (2001) Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behav Brain Res 123:201–218PubMedCrossRefGoogle Scholar
  35. Walsh RR, Small SL, Chen EE, Solodkin A (2008) Network activation during bimanual movements in humans. Neuroimage 43:540–553PubMedCrossRefGoogle Scholar
  36. Weiss P, Jeannerod M (1998) Getting a grasp on coordination. News Physiol Sci 13:70–75PubMedGoogle Scholar
  37. Weiss PH, Jeannerod M, Paulignan Y, Freund HJ (2000) Is the organisation of goal-directed action modality specific? A common temporal structure. Neuropsychologia 38:1136–1147PubMedCrossRefGoogle Scholar
  38. Wenderoth N, Toni I, Bedeleem S, Debaere F, Swinnen SP (2006) Information processing in human parieto-frontal circuits during goal-directed bimanual movements. Neuroimage 31:264–278PubMedCrossRefGoogle Scholar
  39. Wilson AD, Bingham GP (2008) Identifying the information for the visual perception of relative phase. Percept Psychophys 70(3):465–476PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Marianne I. Christel
    • 1
  • Marc Jeannerod
    • 2
  • Peter H. Weiss
    • 3
    • 4
  1. 1.Biologie, HumanbiologieFreie Universität BerlinBerlinGermany
  2. 2.Institut des Sciences CognitivesBronFrance
  3. 3.Kognitive Neurologie, Klinik und Poliklinik für Neurologie, Uniklinik KölnKölnGermany
  4. 4.Kognitive Neurologie (INM-3), Forschungszentrum JülichJülichGermany

Personalised recommendations