Advertisement

Experimental Brain Research

, Volume 217, Issue 1, pp 89–97 | Cite as

Multisensory simultaneity recalibration: storage of the aftereffect in the absence of counterevidence

  • Tonja-Katrin Machulla
  • Massimiliano Di Luca
  • Eva Froehlich
  • Marc O. Ernst
Research Article

Abstract

Recent studies show that repeated exposure to an asynchrony between auditory and visual stimuli shifts the point of subjective simultaneity. Usually, the measurement stimuli used to assess this aftereffect are interleaved with short re-exposures to the asynchrony. In a first experiment, we show that the aftereffect declines during measurement in spite of the use of re-exposures. In a second experiment, we investigate whether the observed decline is either due to a dissipation of the aftereffect with the passage of time, or the result of using measurement stimuli with a distribution of asynchronies different from the exposure stimulus. To this end, we introduced a delay before measuring the aftereffects and we compared the magnitude of the aftereffect with and without delay. We find that the aftereffect does not dissipate during the delay but instead is stored until new sensory information in the form of measurement stimuli is presented as counterevidence (i.e., stimuli with an asynchrony that differs from the one used during exposure).

Keywords

Temporal recalibration Audiovisual integration Temporal order judgment Multisensory time perception Subjective simultaneity 

Notes

Acknowledgments

T.-K.M. and M.D.L. contributed equally to this work. This work was supported by Deutsche Forschungsgesellschaft (Sonderforschungsbereich 550-A11), EU Grants “Immer-Sence” (IST-2006-027141), and “THE” (IST-2009-248587) and the Max Planck Society.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. de Gelder B, Bertelson P (2003) Multisensory integration, perception and ecological validity. Trends Cogn Sci 7:460–467PubMedCrossRefGoogle Scholar
  2. Di Luca M, Machulla T-K, Ernst MO (2009) Recalibration of multisensory simultaneity: cross-modal transfer coincides with a change in perceptual latency. J Vis 9:1–16PubMedCrossRefGoogle Scholar
  3. Fujisaki W, Shimojo S, Kashino M, Nishida S (2004) Recalibration of audiovisual simultaneity. Nat Neurosci 7:773–778PubMedCrossRefGoogle Scholar
  4. Hanson JVM, Heron J, Whitaker D (2008) Recalibration of perceived time across sensory modalities. Exp Brain Res 185:347–352PubMedCrossRefGoogle Scholar
  5. Harrar V, Harris LR (2005) Simultaneity constancy: detecting events with touch and vision. Exp Brain Res 166:465–473PubMedCrossRefGoogle Scholar
  6. Harrar V, Harris LR (2008) The effect of exposure to asynchronous audio, visual, and tactile stimulus combinations on the perception of simultaneity. Exp Brain Res 186:517–524PubMedCrossRefGoogle Scholar
  7. Helson H (1947) Adaptation-level as frame of reference for prediction of psychophysical data. Am J Psychol 60:1–29PubMedCrossRefGoogle Scholar
  8. Helson H (1964) Adaptation-level theory: an experimental and systematic approach to behavior. Harper & Row, New YorkGoogle Scholar
  9. Heron J, Whitaker D, McGraw P, Horoshenkov K (2007) Adaptation minimizes distance-related audiovisual delays. J Vis 7:1–8PubMedCrossRefGoogle Scholar
  10. Heron J, Roach N, Whitaker D, Hanson JVM (2010) Attention regulates the plasticity of multisensory timing. Eur J Neurosci 31:1755–1762PubMedCrossRefGoogle Scholar
  11. Heron J, Aaen-Stockdale C, Hotchkiss J, Roach NW, McGraw PV, Whitaker D (2011) Duration channels mediate human time perception. Proc R Soc B. doi: 10.1098/rspb.2011.1131
  12. Keetels MN, Vroomen J (2007a) No effect of auditory-visual spatial disparity on temporal recalibration. Exp Brain Res 182:559–565PubMedCrossRefGoogle Scholar
  13. Keetels MN, Vroomen J (2007b) Temporal recalibration to tactile-visual asynchronous stimuli. Neurosci Lett 430:130–134PubMedCrossRefGoogle Scholar
  14. King AJ (2005) Multisensory integration: strategies for synchronization. Curr Biol 15:R339–R341PubMedCrossRefGoogle Scholar
  15. Kohler W, Wallach H (1944) Figural aftereffects: an investigation of visual processes. Proc Am Philos Soc 88:269–357Google Scholar
  16. Miyazaki M, Yamamoto S, Uchida S, Kitazawa S (2006) Bayesian calibration of simultaneity in tactile temporal order judgment. Nat Neurosci 9:875–877PubMedCrossRefGoogle Scholar
  17. Mollon J (1974) After-effects and the brain. New Scientist 61:479–481Google Scholar
  18. Navarra J, Vatakis A, Zampini M, Soto-Faraco S, Humphreys W, Spence C (2005) Exposure to asynchronous audiovisual speech extends the temporal window for audiovisual integration. Cogn Brain Res 25:499–507CrossRefGoogle Scholar
  19. Navarra J, Soto-Faraco S, Spence C (2007) Adaptation to audiotactile asynchrony. Neurosci Lett 413:72–76PubMedCrossRefGoogle Scholar
  20. Navarra J, Hartcher-O’Brien J, Piazza E, Spence C (2009) Adaptation to audiovisual asynchrony modulates the speeded detection of sound. Proc Natl Acad Sci USA 106:9169–9173PubMedCrossRefGoogle Scholar
  21. Roach NW, Heron J, Whitaker D, McGraw PV (2010) Asynchrony adaptation reveals neural population code for audio-visual timing. Proc R Soc B 278:1314–1322PubMedCrossRefGoogle Scholar
  22. Spence C, Squire S (2003) Multisensory integration: maintaining the perception of synchrony. Curr Biol 13:519–521CrossRefGoogle Scholar
  23. Stetson C, Cui X, Montague P, Eagleman DM (2006) Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron 51:651–659PubMedCrossRefGoogle Scholar
  24. Takahashi K, Saiki J, Watanabe K (2008) Realignment of temporal simultaneity between vision and touch. Neurorep 19:319–322CrossRefGoogle Scholar
  25. van Eijk RLJ, Kohlrauch A, Juola JF, van de Par S (2008) Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type. Atten Percept Psychophys 70:955–968Google Scholar
  26. Vatakis A, Navarra J, Soto-Faraco S, Spence C (2007) Temporal recalibration during asynchronous audiovisual speech perception. Exp Brain Res 181:173–181PubMedCrossRefGoogle Scholar
  27. Vatakis A, Navarra J, Soto-Faraco S, Spence C (2008) Audiovisual temporal adaptation of speech: temporal order versus simultaneity judgments. Exp Brain Res 185:521–529PubMedCrossRefGoogle Scholar
  28. Vroomen J, Keetels MN (2010) Perception of intersensory synchrony: a tutorial review. Atten Percept Psychophys 72:871–884PubMedCrossRefGoogle Scholar
  29. Vroomen J, Keetels MN, De Gelder B, Bertelson P (2004) Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cogn Brain Res 22:32–35CrossRefGoogle Scholar
  30. Wichmann FA, Hill NJ (2001) The psychometric function: I. fitting, sampling and goodness-of-fit. Perc Psychophys 63:1293–1313CrossRefGoogle Scholar
  31. Wozny DR, Shams L (2011) Recalibration of auditory space following milliseconds of cross-modal discrepancy. J Neurosci 31:4607–4612PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tonja-Katrin Machulla
    • 1
    • 2
  • Massimiliano Di Luca
    • 1
    • 3
  • Eva Froehlich
    • 1
    • 4
  • Marc O. Ernst
    • 5
    • 1
  1. 1.Multisensory Perception and Action GroupMax Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Graduate Training Centre of NeuroscienceInternational Max Planck Research School, University of TübingenTübingenGermany
  3. 3.University of BirminghamEdgbastonUK
  4. 4.Department of Experimental and Neurocognitive PsychologyFreie Universität BerlinBerlinGermany
  5. 5.Department of Cognitive NeuroscienceBielefeld UniversityBielefeldGermany

Personalised recommendations