Experimental Brain Research

, Volume 215, Issue 3–4, pp 315–325 | Cite as

The role of the right parietal lobe in the perception of causality: a tDCS study

  • Benjamin Straube
  • David Wolk
  • Anjan Chatterjee
Research Article


Inferring causality is a fundamental feature of human cognition that allows us to predict outcomes in everyday events. Here, we use direct current stimulation (tDCS) to investigate the role of the right parietal lobe in the perception of causal events. Based on the results of a previous fMRI investigation, we hypothesized that the right parietal lobe plays a specific role in the processing of spatial attributes that contribute to judgments of causality. In line with our hypothesis, we found polarization-dependent modulation of causal judgments and corresponding reaction times (RTs) for trials with increasing violation of spatial contiguity in launching events. This effect was further modulated by temporal violations, as the effect of tDCS on the use of spatial information for causality judgements was strongest for trials with high temporal violations. Thus, especially for ambiguous trials with regard to temporal patterns, cathodal stimulation led to more liberal causality judgments for trials with high angles in movement trajectory. Furthermore, we found faster RTs after anodal stimulation of the right parietal lobe. These findings suggest a reduced influence of spatial attributes on the perception of causality after cathode stimulation of the right parietal lobe and an increased processing efficiency after anodal stimuli of the same region. These data demonstrate polarization-dependent tDCS modulation of spatial processing mechanisms within the right parietal lobe that contribute to the perception of causality.


Perception of causality Spatial continuity Temporal contiguity Parietal lobe Event structure 


  1. Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB (2011) Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul 4:84–89. doi: 10.1016/j.brs.2010.06.004 PubMedCrossRefGoogle Scholar
  2. Antal A, Paulus W (2008) Transcranial direct current stimulation and visual perception. Perception 37:367–374PubMedCrossRefGoogle Scholar
  3. Antal A, Kincses TZ, Nitsche MA, Bartfai O, Paulus W (2004a) Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence. Invest Ophthalmol Vis Sci 45:702–707PubMedCrossRefGoogle Scholar
  4. Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann KP, Paulus W (2004b) Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 16:521–527. doi: 10.1162/089892904323057263 PubMedCrossRefGoogle Scholar
  5. Antal A, Nitsche MA, Paulus W (2006) Transcranial direct current stimulation and the visual cortex. Brain Res Bull 68:459–463. doi: 10.1016/j.brainresbull.2005.10.006 PubMedCrossRefGoogle Scholar
  6. Battelli L, Alvarez GA, Carlson T, Pascual-Leone A (2009) The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation. J Cogn Neurosci 21:1946–1955. doi: 10.1162/jocn.2008.21149 PubMedCrossRefGoogle Scholar
  7. Berryhill ME, Wencil EB, Branch Coslett H, Olson IR (2010) A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett 479:312–316. doi: 10.1016/j.neulet.2010.05.087 PubMedCrossRefGoogle Scholar
  8. Billino J, Braun DI, Böhm KD, Bremmer F, Gegenfurtner KR (2009) Cortical networks for motion processing: effects of focal brain lesions on perception of different motion types. Neuropsychologia 47:2133–2144. doi: 10.1016/j.neuropsychologia.2009.04.005 PubMedCrossRefGoogle Scholar
  9. Blakemore SJ, Fonlupt P, Pachot-Clouard M et al (2001) How the brain perceives causality: an event-related fMRI study. Neuroreport 12:3741–3746PubMedCrossRefGoogle Scholar
  10. Boggio PS, Castro LO, Savagim EA et al (2006a) Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett 404:232–236. doi: 10.1016/j.neulet.2006.05.051 PubMedCrossRefGoogle Scholar
  11. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F (2006b) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249:31–38. doi: 10.1016/j.jns.2006.05.062 PubMedCrossRefGoogle Scholar
  12. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F (2007) Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 25:123–129PubMedGoogle Scholar
  13. Boggio PS, Fregni F, Valasek C et al (2009a) Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PLoS One 4:e4959. doi: 10.1371/journal.pone.0004959 PubMedCrossRefGoogle Scholar
  14. Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F (2009b) Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry 80:444–447. doi: 10.1136/jnnp.2007.141853 PubMedCrossRefGoogle Scholar
  15. Boggio PS, Campanhã C, Valasek CA, Fecteau S, Pascual-Leone A, Fregni F (2010a) Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci 31:593–597. doi: 10.1111/j.1460-9568.2010.07080.x PubMedCrossRefGoogle Scholar
  16. Boggio PS, Zaghi S, Villani AB, Fecteau S, Pascual-Leone A, Fregni F (2010b) Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend 112:220–225. doi: 10.1016/j.drugalcdep.2010.06.019 PubMedCrossRefGoogle Scholar
  17. Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G (2010a) Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res 1349:76–89. doi: 10.1016/j.brainres.2010.06.053 PubMedCrossRefGoogle Scholar
  18. Bolognini N, Olgiati E, Rossetti A, Maravita A (2010b) Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci 31:1800–1806. doi: 10.1111/j.1460-9568.2010.07211.x PubMedCrossRefGoogle Scholar
  19. Boros K, Poreisz C, Münchau A, Paulus W, Nitsche MA (2008) Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans. Eur J Neurosci 27:1292–1300. doi: 10.1111/j.1460-9568.2008.06090.x PubMedCrossRefGoogle Scholar
  20. Dambeck N, Sparing R, Meister IG, Wienemann M, Weidemann J, Topper R, Boroojerdi B (2006) Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices. Brain Res 1072:194–199. doi: 10.1016/j.brainres.2005.05.075 PubMedCrossRefGoogle Scholar
  21. Diaz MT, He G, Gadde S, Bellion C, Belger A, Voyvodic JT, McCarthy G (2011) The influence of emotional distraction on verbal working memory: an fMRI investigation comparing individuals with schizophrenia and healthy adults. J Psychiatr Res. doi: 10.1016/j.jpsychires.2011.02.008
  22. Dockery CA, Hueckel-Weng R, Birbaumer N, Plewnia C (2009) Enhancement of planning ability by transcranial direct current stimulation. J Neurosci 29:7271–7277. doi: 10.1523/JNEUROSCI.0065-09.2009 PubMedCrossRefGoogle Scholar
  23. Fecteau S, Knoch D, Fregni F, Sultani N, Boggio P, Pascual-Leone A (2007) Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci 27:12500–12505. doi: 10.1523/JNEUROSCI.3283-07.2007 PubMedCrossRefGoogle Scholar
  24. Ferrucci R, Marceglia S, Vergari M et al (2008) Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci 20:1687–1697. doi: 10.1162/jocn.2008.20112 PubMedCrossRefGoogle Scholar
  25. Fertonani A, Rosini S, Cotelli M, Rossini PM, Miniussi C (2010) Naming facilitation induced by transcranial direct current stimulation. Behav Brain Res 208:311–318. doi: 10.1016/j.bbr.2009.10.030 PubMedCrossRefGoogle Scholar
  26. Fonlupt P (2003) Perception and judgement of physical causality involve different brain structures. Brain Res Cogn Brain Res 17:248–254. doi: S0926641003001125 PubMedCrossRefGoogle Scholar
  27. Fregni F, Boggio PS, Nitsche M et al (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30. doi: 10.1007/s00221-005-2334-6 PubMedCrossRefGoogle Scholar
  28. Fugelsang JA, Roser ME, Corballis PM, Gazzaniga MS, Dunbar KN (2005) Brain mechanisms underlying perceptual causality. Brain Res Cogn Brain Res 24:41–47. doi: 10.1016/j.cogbrainres.2004.12.001 PubMedCrossRefGoogle Scholar
  29. Gandiga PC, Hummel FC, Cohen LG (2006) Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol 117:845–850. doi: 10.1016/j.clinph.2005.12.003 PubMedCrossRefGoogle Scholar
  30. Giglia G, Mattaliano P, Puma A, Rizzo S, Fierro B, Brighina F (2011) Neglect-like effects induced by tDCS modulation of posterior parietal cortices in healthy subjects. Brain Stimul. doi: 10.1016/j.brs.2011.01.003
  31. Grosbras MH, Beaton S, Eickhoff SB (2011) Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis. Hum Brain Mapp. doi: 10.1002/hbm.21222
  32. Hilgetag CC, Théoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4:953–957. doi: 10.1038/nn0901-953 PubMedCrossRefGoogle Scholar
  33. Hsu TY, Tseng LY, Yu JX et al (2011) Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. Neuroimage 56:2249–2257. doi: 10.1016/j.neuroimage.2011.03.059 PubMedCrossRefGoogle Scholar
  34. Hume D (1740/1960) A treatise of human nature. Clarendon, OxfordGoogle Scholar
  35. Hume D (1748/1977) An enquiry concerning human understanding. Hackett, IndianapolisGoogle Scholar
  36. Hummel FC, Heise K, Celnik P, Floel A, Gerloff C, Cohen LG (2010) Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol Aging 31:2160–2168. doi: 10.1016/j.neurobiolaging.2008.12.008 PubMedCrossRefGoogle Scholar
  37. Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–875. doi: 10.1212/01.WNL.0000152986.07469.E9 PubMedCrossRefGoogle Scholar
  38. Kang EK, Kim YK, Sohn HM, Cohen LG, Paik NJ (2011) Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restor Neurol Neurosci 29:141–152. doi: 10.3233/RNN-2011-0587 PubMedGoogle Scholar
  39. Keehner M, Guerin SA, Miller MB, Turk DJ, Hegarty M (2006) Modulation of neural activity by angle of rotation during imagined spatial transformations. Neuroimage 33:391–398. doi: 10.1016/j.neuroimage.2006.06.043 PubMedCrossRefGoogle Scholar
  40. Kim YH, Min SJ, Ko MH, Park JW, Jang SH, Lee PK (2005) Facilitating visuospatial attention for the contralateral hemifield by repetitive TMS on the posterior parietal cortex. Neurosci Lett 382:280–285. doi: 10.1016/j.neulet.2005.03.043 PubMedCrossRefGoogle Scholar
  41. Kincses TZ, Antal A, Nitsche MA, Bártfai O, Paulus W (2004) Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42:113–117. doi: S0028393203001246 PubMedCrossRefGoogle Scholar
  42. Knoch D, Nitsche MA, Fischbacher U, Eisenegger C, Pascual-Leone A, Fehr E (2008) Studying the neurobiology of social interaction with transcranial direct current stimulation–the example of punishing unfairness. Cereb Cortex 18:1987–1990. doi: 10.1093/cercor/bhm237 PubMedCrossRefGoogle Scholar
  43. Ko MH, Han SH, Park SH, Seo JH, Kim YH (2008) Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neurosci Lett 448:171–174. doi: 10.1016/j.neulet.2008.10.050 PubMedCrossRefGoogle Scholar
  44. Kwon YH, Jang SH (2011) The enhanced cortical activation induced by transcranial direct current stimulation during hand movements. Neurosci Lett 492:105–108. doi: 10.1016/j.neulet.2011.01.066 PubMedCrossRefGoogle Scholar
  45. Lang N, Siebner HR, Chadaide Z et al (2007) Bidirectional modulation of primary visual cortex excitability: a combined tDCS and rTMS study. Invest Ophthalmol Vis Sci 48:5782–5787. doi: 10.1167/iovs.07-0706 PubMedCrossRefGoogle Scholar
  46. Lewis PA, Miall RC (2003) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41:1583–1592. doi: S0028393203001180 PubMedCrossRefGoogle Scholar
  47. Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247PubMedCrossRefGoogle Scholar
  48. Marshall L, Mölle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24:9985–9992. doi: 10.1523/JNEUROSCI.2725-04.2004 PubMedCrossRefGoogle Scholar
  49. Marshall L, Kirov R, Brade J, Mölle M, Born J (2011) Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One 6:e16905. doi: 10.1371/journal.pone.0016905 PubMedCrossRefGoogle Scholar
  50. Meck WH, Penney TB, Pouthas V (2008) Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol 18:145–152. doi: 10.1016/j.conb.2008.08.002 PubMedCrossRefGoogle Scholar
  51. Michotte AE (1946/1963) The perception of causality (trans: Miles TR, Miles E). Methuen, London (Original published in 1946)Google Scholar
  52. Monti A, Cogiamanian F, Marceglia S et al (2008) Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 79:451–453. doi: 10.1136/jnnp.2007.135277 PubMedCrossRefGoogle Scholar
  53. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt 3):633–639. doi: PHY_1055 PubMedCrossRefGoogle Scholar
  54. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W (2003) Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 114:2220–2222. doi: S1388245703002359 author reply 2222–2223PubMedCrossRefGoogle Scholar
  55. Nitsche MA, Grundey J, Liebetanz D, Lang N, Tergau F, Paulus W (2004a) Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex 14:1240–1245. doi: 10.1093/cercor/bhh085 PubMedCrossRefGoogle Scholar
  56. Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W (2004b) Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 29:1573–1578. doi: 10.1038/sj.npp.1300517 PubMedCrossRefGoogle Scholar
  57. Nitsche MA, Niehaus L, Hoffmann KT, Hengst S, Liebetanz D, Paulus W, Meyer BU (2004c) MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin Neurophysiol 115:2419–2423. doi: 10.1016/j.clinph.2004.05.001 PubMedCrossRefGoogle Scholar
  58. Nitsche MA, Seeber A, Frommann K et al (2005) Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 568:291–303. doi: 10.1113/jphysiol.2005.092429 PubMedCrossRefGoogle Scholar
  59. Nitsche MA, Roth A, Kuo MF et al (2007) Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J Neurosci 27:3807–3812. doi: 10.1523/JNEUROSCI.5348-06.2007 PubMedCrossRefGoogle Scholar
  60. Ragert P, Vandermeeren Y, Camus M, Cohen LG (2008) Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol 119:805–811. doi: 10.1016/j.clinph.2007.12.001 PubMedCrossRefGoogle Scholar
  61. Reis J, Robertson E, Krakauer JW et al (2008a) Consensus: “can tDCS and TMS enhance motor learning and memory formation?”. Brain Stimul 1:363–369. doi: 10.1016/j.brs.2008.08.001 CrossRefGoogle Scholar
  62. Reis J, Robertson EM, Krakauer JW et al (2008b) Consensus: can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation? Brain Stimul 1:363–369. doi: 10.1016/j.brs.2008.08.001 CrossRefGoogle Scholar
  63. Roser ME, Fugelsang JA, Dunbar KN, Corballis PM, Gazzaniga MS (2005) Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology 19:591–602. doi: 10.1037/0894-4105.19.5.591 PubMedCrossRefGoogle Scholar
  64. Satpute AB, Fenker DB, Waldmann MR, Tabibnia G, Holyoak KJ, Lieberman MD (2005) An fMRI study of causal judgments. Eur J Neurosci 22:1233–1238. doi: 10.1111/j.1460-9568.2005.04292.x PubMedCrossRefGoogle Scholar
  65. Schlottmann A, Ray ED, Mitchell A, Demetriou N (2006) Perceived physical and social causality in animated motions: spontaneous reports and ratings. Acta Psychol (Amst) 123:112–143. doi: 10.1016/j.actpsy.2006.05.006 CrossRefGoogle Scholar
  66. Scholl BJ, Tremoulet PD (2000) Perceptual causality and animacy. Trends Cogn Sci 4:299–309. doi: S1364-6613(00)01506-0 PubMedCrossRefGoogle Scholar
  67. Schweid L, Rushmore RJ, Valero-Cabré A (2008) Cathodal transcranial direct current stimulation on posterior parietal cortex disrupts visuo-spatial processing in the contralateral visual field. Exp Brain Res 186:409–417. doi: 10.1007/s00221-007-1245-0 PubMedCrossRefGoogle Scholar
  68. Shulman GL, Ollinger JM, Akbudak E, Conturo TE, Snyder AZ, Petersen SE, Corbetta M (1999) Areas involved in encoding and applying directional expectations to moving objects. J Neurosci 19:9480–9496PubMedGoogle Scholar
  69. Shulman GL, Pope DL, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M (2010) Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J Neurosci 30:3640–3651. doi: 10.1523/JNEUROSCI.4085-09.2010 PubMedCrossRefGoogle Scholar
  70. Sparing R, Dafotakis M, Meister IG, Thirugnanasambandam N, Fink GR (2008) Enhancing language performance with non-invasive brain stimulation–a transcranial direct current stimulation study in healthy humans. Neuropsychologia 46:261–268. doi: 10.1016/j.neuropsychologia.2007.07.009 PubMedCrossRefGoogle Scholar
  71. Sparing R, Thimm M, Hesse MD, Küst J, Karbe H, Fink GR (2009) Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132:3011–3020. doi: 10.1093/brain/awp154 PubMedCrossRefGoogle Scholar
  72. Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17:37–53. doi: 10.1177/1073858410386614 PubMedCrossRefGoogle Scholar
  73. Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H (2011) Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49:800–804. doi: 10.1016/j.neuropsychologia.2011.02.009 PubMedCrossRefGoogle Scholar
  74. Straube B, Chatterjee A (2010) Space and time in perceptual causality. Front Hum Neurosci 4:28. doi: 10.3389/fnhum.2010.00028 PubMedGoogle Scholar
  75. Tschacher W, Kupper Z (2006) Perception of causality in schizophrenia spectrum disorder. Schizophr Bull 32(Suppl 1):S106–S112. doi: 10.1093/schbul/sbl018 PubMedCrossRefGoogle Scholar
  76. Vallar G, Bolognini N (2011) Behavioural facilitation following brain stimulation: implications for neurorehabilitation. Neuropsychol Rehabil 19:1–32. doi:  10.1080/09602011.2011.574050 Google Scholar
  77. Vines BW, Schnider NM, Schlaug G (2006) Testing for causality with transcranial direct current stimulation: pitch memory and the left supramarginal gyrus. Neuroreport 17:1047–1050. doi: 10.1097/01.wnr.0000223396.05070.a2 PubMedCrossRefGoogle Scholar
  78. Wu DH, Morganti A, Chatterjee A (2008) Neural substrates of processing path and manner information of a moving event. Neuropsychologia 46:704–713. doi: 10.1016/j.neuropsychologia.2007.09.016 PubMedCrossRefGoogle Scholar
  79. Zacks JM, Swallow KM, Vettel JM, McAvoy MP (2006) Visual motion and the neural correlates of event perception. Brain Res 1076:150–162. doi: 10.1016/j.brainres.2005.12.122 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Benjamin Straube
    • 1
    • 2
  • David Wolk
    • 1
  • Anjan Chatterjee
    • 1
  1. 1.Department of Neurology and the Center for Cognitive NeuroscienceThe University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Psychiatry und PsychotherapyPhilipps-University MarburgMarburgGermany

Personalised recommendations