Experimental Brain Research

, Volume 216, Issue 1, pp 1–10 | Cite as

tDCS polarity effects in motor and cognitive domains: a meta-analytical review

Mini-Review

Abstract

In vivo effects of transcranial direct current stimulation (tDCS) have attracted much attention nowadays as this area of research spreads to both the motor and cognitive domains. The common assumption is that the anode electrode causes an enhancement of cortical excitability during stimulation, which then lasts for a few minutes thereafter, while the cathode electrode generates the opposite effect, i.e., anodal-excitation and cathodal-inhibition effects (AeCi). Yet, this dual-polarity effect has not been observed in all tDCS studies. Here, we conducted a meta-analytical review aimed to investigate the homogeneity/heterogeneity of the effect sizes of the AeCi dichotomy in both motor and cognitive functions. The AeCi effect was found to occur quite commonly with motor investigations and rarely in cognitive studies. When the anode electrode is applied over a non-motor area, in most cases, it will cause an excitation as measured by a relevant cognitive or perceptual task; however, the cathode electrode rarely causes an inhibition. We found homogeneity in motor studies and heterogeneity in cognitive studies with the electrode’s polarity serving as a moderator that can explain the source of heterogeneity in cognitive studies. The lack of inhibitory cathodal effects might reflect compensation processes as cognitive functions are typically supported by rich brain networks. Further insights as to the polarity and domain interaction are offered, including subdivision to different classes of cognitive functions according to their likelihood of being affected by stimulation.

Keywords

Cognitive Meta-analysis Motor Transcranial direct current stimulation (tDCS) 

References

  1. 19Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald FB (2011) Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul 4(2):84–89PubMedCrossRefGoogle Scholar
  2. Antal A, Nitsche MA, Kruse W, Kincses TZ, Hoffmann K, Paulus W (2004) Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci 4(16):521–527CrossRefGoogle Scholar
  3. Baudewig J, Nitsche MA, Paulus W, Frahm J (2001) Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn Reson Med 45(2):196–201PubMedCrossRefGoogle Scholar
  4. 20Berryhill ME, Wencil EB, Coslett HB, Olson IR (2010) A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett 479:312–316PubMedCrossRefGoogle Scholar
  5. Bindman LJ, Lippold OCJ, Redfearn JWT (1964) The action of brief polarizing currents on the cerebral cortex of the rat 1 during current flow and 2 in the production of long-lasting after-effects. J Physiol 172:369–382PubMedGoogle Scholar
  6. 1Boggio PS, Castro LO, Savagim EA, Braite R, Cruz VC, Rocha RR, Rigonatti SP, Silva MTA, Fregni F (2006a) Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett 404:232–236PubMedCrossRefGoogle Scholar
  7. 22Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, Fregni F (2006b) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249(1):31–38PubMedCrossRefGoogle Scholar
  8. 23Boggio PS, Rocha RR, Theodoro da Silvaa M, Fregni F (2008) Differential modulatory effects of transcranial direct current stimulation on a facial expression go-no-go task in males and females. Neurosci Lett 447:101–105PubMedCrossRefGoogle Scholar
  9. 25Boggio PS, Zaghi S, Fregni F (2009) Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia 47(1):212–217PubMedCrossRefGoogle Scholar
  10. 21Boggio PS, Campanha C, Valasek CA, Fecteau S, Pascual-Leone A, Fregni F (2010a) Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur J Neurosci 31:593–597PubMedCrossRefGoogle Scholar
  11. 24Boggio PS, Zaghi S, Beatriz-Villani Ana, Fecteau S, Pascual-Leone A, Fregni F (2010b) Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend 112:220–225PubMedCrossRefGoogle Scholar
  12. 26Bolognini N, Fregni F, Casati C, Olgiati E, Vallar G (2010a) Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res 1349:76–89PubMedCrossRefGoogle Scholar
  13. 27Bolognini N, Olgiati E, Rossetti A, Maravita A (2010b) Enhancing multisensory spatial orienting by brain polarization of the parietal cortex. Eur J Neurosci 31:1800–1806PubMedCrossRefGoogle Scholar
  14. Catani M, Jones DK, Ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16PubMedCrossRefGoogle Scholar
  15. 28Cerruti C, Schlaug G (2008) Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci 21(10):1980–1987CrossRefGoogle Scholar
  16. 29Chi RP, Fregni F, Snyder AW (2010) Visual memory improved by non-invasive brain stimulation. Brain Res 1353:168–175PubMedCrossRefGoogle Scholar
  17. 2Csifcsak G, Antal A, Hillers F, Levold M, Bachmann CG, Happe S, Nitsche MA, Ellrich J, Paulus W (2009) Modulatory effects of transcranial direct current stimulation on laser-evoked potentials. Am Acad Pain Mad 10(1):122–132Google Scholar
  18. Elsberg CA (1917) Experiments on motor nerve regeneration and the direct neurotization of paralyzed muscles by their own and by foreign nerves. Science 45(1161):318–320PubMedCrossRefGoogle Scholar
  19. 30Fecteau S, Knoch D, Fregni F, Sultani N, Boggio PS, Pascual-Leone A (2007) Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci 27(46):12500–12505PubMedCrossRefGoogle Scholar
  20. 31Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, Ceravolo MG, Provinciali L, Tomaiuolo F, Marangolo P (2010) Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neuroscsi 23(9):2309–2323CrossRefGoogle Scholar
  21. 32Floel A, Rosser N, Michka O, Knecht S, Breitenstein C (2008) Noninvasive brain stimulation improves language learning. J Cogn Neurosci 20(8):1415–1422PubMedCrossRefGoogle Scholar
  22. Fox PT, Narayana S, Tandon N, Fox SP, Sandoval H, Kochunov P, Capaday C, Lancaster L (2006) Intensity modulation of TMS-induced cortical excitation: primary motor cortex. Hum Brain Map 27:478–487CrossRefGoogle Scholar
  23. 33Fregni F, Boggio PS, Nitsche MA, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti SP, Silva MT, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166(1):23–30PubMedCrossRefGoogle Scholar
  24. 3Fregni F, Boggio PS, Santos MC, Lima M, Vieira AL, Rigonatti SP, Silva MTA, Barbosa ER, Nitsche MA, Pascual-Leone A (2006) Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov Disord 21(10):1693–1702PubMedCrossRefGoogle Scholar
  25. Fuortes MFG (1954) Direct current stimulation of motornurones. J Physiol 126:494–506PubMedGoogle Scholar
  26. 4Furubayashi T, Terao Y, Arai N, Okabe S, Mochizuki H, Hanajima R, Hamada M, Yugeta A, Inomata-Terada S, Ugawa Y (2008) Transcranial direct current stimulation (tDCS) over the human hand motor area. Exp Brain Res 185:279–286PubMedCrossRefGoogle Scholar
  27. 5Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. J Neurosci 29(28):9115–9122PubMedCrossRefGoogle Scholar
  28. Hern JEC, Landgren S, Phillips CG, Porter R (1962) Selective excitation of corticofugal neurones by surface-anodal stimulation of the baboon’s motor cortex. J Physiol 161:73–90Google Scholar
  29. Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558PubMedCrossRefGoogle Scholar
  30. 6Hummel FC, Heise K, Celnik P, Floel A, Gerloff C, Cohen LG (2010) Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol Aging 31(12):2160–2168PubMedCrossRefGoogle Scholar
  31. 7Hunter T, Sacco P, Nitsche MA, Turner DL (2009) Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol 587(12):2949–2961PubMedCrossRefGoogle Scholar
  32. 34Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM (2005) Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology 64:872–875PubMedCrossRefGoogle Scholar
  33. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, Mcquay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12PubMedCrossRefGoogle Scholar
  34. 8Jefferson S, Mistry S, Singh S, Rothwell J, Hamdy S (2009) Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex. Am J Physiol Gastrointest Liver Physiol 297:1035–1040CrossRefGoogle Scholar
  35. 9Jeffery DT, Norton JA, Roy FD, Gorassini MA (2007) Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Exp Brain Res 182(2):281–287PubMedCrossRefGoogle Scholar
  36. 35Jo JM, Kim Y-H, Ko M-H, Ohn SH, Joen B, Lee KH (2009) Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil 88:404–409PubMedCrossRefGoogle Scholar
  37. 36Karim AA, Schneider M, Lotze M, Veit R, Sauseng P, Braun C, Birbaumer N (2010) The truth about lying: inhibition of the anterior prefrontal cortex improves deceptive behavior. Cereb Cortex 20:205–213PubMedCrossRefGoogle Scholar
  38. 37Kincses TZ, Antal A, Nitsche MA, Bartfai O, Paulus W (2004) Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42(1):113–117PubMedCrossRefGoogle Scholar
  39. 10Kirimoto H, Ogata K, Onishi H, Oyama M, Goto Y, Tobimatsu S (2009) Transcranial direct current stimulation over premotor cortex modifies the excitability of the ipsilateral primary motor and somatosensory cortices. IEEE 978-1-4244-3316-2/09Google Scholar
  40. 50Knoch D, Nitsche MA, Fischbacher U, Eisenegger C, Pascual-Leone A, Fehr E (2008) Studying the neurobiology of social interaction with transcranial direct current stimulation-the example of punishing unfairness. Cereb Cortex 18:1987–1990PubMedCrossRefGoogle Scholar
  41. 38Kraft A, Roehmel J, Olma MC, Schmidt S, Irlbacher K, Brandt SA (2010) Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Exp Brain Res 207:283–290PubMedCrossRefGoogle Scholar
  42. 11Lang N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN (2004a) Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp Brain Res 156(4):439–443PubMedCrossRefGoogle Scholar
  43. 12Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004b) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56:634–639PubMedCrossRefGoogle Scholar
  44. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22:495–504PubMedCrossRefGoogle Scholar
  45. Liddle PF, Kiehl KA, Smith AM (2001) Event-related fMRI study of response inhibition. Hum Brain Mapp 12(2):100PubMedCrossRefGoogle Scholar
  46. 51Loui P, Hohmann A, Schlaug G (2010) Inducing disorders in pitch perception and production: a reverse-engineering approach. Proc Meet Acoust 9(1):50002PubMedCrossRefGoogle Scholar
  47. 39Mameli F, Mrakic-Sposta S, Vergari M, Fumagallia M, Macisa M, Ferrucci R, Nordio Francesco, Consonni D, Sartori G, Priori A (2010) Dorsolateral prefrontal cortex specifically processes general—but not personal—knowledge deception: multiple brain networks for lying. Behav Brain Res 211(2):164–168PubMedCrossRefGoogle Scholar
  48. 40Marshall L, Molle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24(44):9985–9992PubMedCrossRefGoogle Scholar
  49. 52Marshall L, Molle M, Siebner H, Born J (2005) Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neurosci 6:23PubMedCrossRefGoogle Scholar
  50. Moher D, Schulz KF, Altman D (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285(15):1987–1991PubMedCrossRefGoogle Scholar
  51. 41Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mrakic-Sposta S, Vergari M, Zago S, Priori A (2008) Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry 79:451–453PubMedCrossRefGoogle Scholar
  52. 13Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(3):633–639PubMedCrossRefGoogle Scholar
  53. 14Power HA, Norton JA, Porter CL, Doyle Z, Hui I, Chan KM (2006) Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence. J Physiol 577(3):795–803PubMedCrossRefGoogle Scholar
  54. Priori A, Berardelli A, Rona S, Accornero N, Manfredi M (1998) Polarization of the human motor cortex through the scalp. NeuroReport 9:2257–2260PubMedCrossRefGoogle Scholar
  55. 42Ragert P, Vandermeeren Y, Camus M, Cohen LG (2008) Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol 119:805–811PubMedCrossRefGoogle Scholar
  56. 43Rogalewski A, Breitenstein C, Nitsche MA, Paulus W, Knecht S (2004) Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci 20:313–316PubMedCrossRefGoogle Scholar
  57. 18Rosenkranz K, Nitsche M, Tergau F, Paulus W (2000) Diminution of training-induced transient motor cortex plasticity by weak transcranial direct current stimulation in the human. Neurosci Lett 296:61–63PubMedCrossRefGoogle Scholar
  58. Rosenthal R (1991) Meta-analytic procedure for social research. Sage publication, Newbury parkGoogle Scholar
  59. 44Ross L, McCoy D, Wolk DA, Coslett B, Olson IR (2010) Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia 48(12):3671–3674PubMedCrossRefGoogle Scholar
  60. Sanchez-Meca J, Marin-Marines F (1997) Homogenity tests in meta-analysis: a Monte Carlo comparisons of statistical power and type I error. Qual Quant 31:385–399CrossRefGoogle Scholar
  61. Shadish WR, Haddock CK (1994) Combining estimate of effect size. In: Cooper HM, Hedges LV (eds) The handbook of research synthesis. Russel Sage foundation, New York, pp 261–281Google Scholar
  62. 15Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(13):3379–3385PubMedCrossRefGoogle Scholar
  63. Silvanto J, Muggleton N, Walsh V (2008) State-dependency in brain stimulation studies of perception and cognition. Trends Cogn Sci 12(12):447–454PubMedCrossRefGoogle Scholar
  64. 45Sparing R, Dafotakis M, Meister IG, Thirugnanasambandam N, Fink GR (2008) Enhancing language performance with non-invasive brain stimulation—a transcranial direct current stimulation study in healthy humans. Neuropsychologia 46:261–268PubMedCrossRefGoogle Scholar
  65. 46Sparing R, Thimm M, Hesse MD, Kust J, Karbe H, Fink GR (2009) Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 1–10Google Scholar
  66. 16Stagg CJ, O’Shea J, Kincses ZT, Woolrich M, Matthews MP, Johansen-Berg H (2009) Modulation of movement-associated cortical activation by transcranial direct current stimulation. Eur J Neurosci 30:1412–1423PubMedCrossRefGoogle Scholar
  67. 47Stone DB, Tesche CD (2009) Transcranial direct current stimulation modulates shifts in global/local attention. NeuroReport 20:1115–1119PubMedGoogle Scholar
  68. Sylvester CYC, Wager TD, Lacey SC, Hernandez L, Nichols TE, Smith EE, Jonides J (2003) Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia 41:357–370PubMedCrossRefGoogle Scholar
  69. 17Tanaka S, Hanakawa T, Honda M, Watanabe K (2009) Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 196:459–465PubMedCrossRefGoogle Scholar
  70. 48Timea VE, Kaya E, Andrea A, Marta Z, Iren H, Paulus W, Gyula K (2007) Cathodal transcranial direct current stimulation over the parietal cortex modifies facial gender adaptation. Ideggyogy 60(11–12):474–479Google Scholar
  71. 49Vries MH, Barth ACR, Maiworm S, Knecht S, Zwitserlood P, Floel A (2009) Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. J Cogn Neurosci 22(11):2427–2436CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Liron Jacobson
    • 1
  • Meni Koslowsky
    • 2
  • Michal Lavidor
    • 1
    • 2
    • 3
  1. 1.The Gonda Multidisciplinary Brain Research CenterBar-Ilan UniversityRamat GanIsrael
  2. 2.Department of PsychologyBar Ilan UniversityRamat GanIsrael
  3. 3.Department of PsychologyUniversity of HullHullUK

Personalised recommendations