Experimental Brain Research

, 214:285 | Cite as

Correlation between olfactory bulb volume and olfactory function in children and adolescents

  • T. HummelEmail author
  • M. Smitka
  • S. Puschmann
  • J. C. Gerber
  • B. Schaal
  • D. Buschhüter
Research Article


The olfactory bulb (OB) is considered to be the most important relay station in odor processing. The present study aimed to investigate the volumetric development of the human bulb and the olfactory function during childhood and youth. Furthermore, the present study aimed to investigate a possible correlation between OB volume and specific olfactory functions including odor threshold, odor discrimination and odor identification. A total of 87 subjects (46 boys, 41 girls), aged 1–17 years (mean age 8 years), participated in this study. None of them reported olfactory dysfunction or had signs of a dysfunctional sense of smell. Whenever possible, participants received a volumetric scan of the brain and lateralized olfactory tests. Volumetric measurements of the right and left OB were taken by manual segmentation of the coronal slices through the OB. Significant correlations between OB volumes and olfactory function were observed. Both, OB volumes and olfactory function increased with age, although the correlation between structure and function was not mediated by the subjects’ age. In conclusion, for the first time, the present study showed a correlation between OB volume and olfactory functions in children.


Brain Olfaction Smell Olfactory bulb Children MRI Volumetry Plasticity Development 



This study was supported by the DDELTAS (Dijon-Dresden European Laboratories for Taste and Smell—LEA 549), underwritten by the Centre National de la Recherche Scientifique-Paris and the Technische Universität Dresden, and awarded to B. Schaal and T. Hummel, and a grant from the Roland Ernst Stiftung to T. Hummel.

Conflict of interest

None of the authors reports a potential conflict of interest.


  1. Abolmaali ND, Hietschold V, Vogl TJ, Huttenbrink KB, Hummel T (2002) MR evaluation in patients with isolated anosmia since birth or early childhood. AJNR Am J Neuroradiol 23:157–164PubMedGoogle Scholar
  2. Buschhüter D, Smitka M, Puschmann S, Gerber JC, Witt M, Abolmaali ND, Hummel T (2008) Correlation between olfactory bulb volume and olfactory function. Neuroimage 42:498–502PubMedCrossRefGoogle Scholar
  3. Cain WS, Gent JF, Goodspeed RB, Leonard G (1988) Evaluation of olfactory dysfunction in the connecticut chemosensory clinical research center (CCCRC). Laryngoscope 98:83–88PubMedCrossRefGoogle Scholar
  4. Cain WS, Stevens JC, Nickou CM, Giles A, Johnston I, Garcia-Medina MR (1995) Life-span development of odor identification, learning, and olfactory sensitivity. Perception 24:1457–1472PubMedCrossRefGoogle Scholar
  5. Conlin JR, Gathercole SE, Adams JW (2005) Children’s working memory: investigating performance limitations in complex span tasks. J Exp Child Psychol 90:303–317PubMedCrossRefGoogle Scholar
  6. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WM, Bjork-Eriksson T, Nordborg C, Frisen J, Dragunow M, Faull RL, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249PubMedCrossRefGoogle Scholar
  7. Doty RL, Shaman P, Dann M (1984) Development of the university of Pennsylvania smell identification test: a standardized microencapsulated test of olfactory function. Physiol Behav 32:489–502PubMedCrossRefGoogle Scholar
  8. Ehrenstein WH, Ehrenstein A (1999) Psychophysical methods. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin, pp 1211–1241Google Scholar
  9. Hudson R, Distel H (1999) The flavor of life: perinatal development of odor and taste preferences. Schweiz Med Wochenschr 129:176–181PubMedGoogle Scholar
  10. Hummel T, Sekinger B, Wolf S, Pauli E, Kobal G (1997) “Sniffin’ sticks”: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 22:39–52PubMedCrossRefGoogle Scholar
  11. Hummel T, Bensafi M, Nikolaus J, Knecht M, Laing DG, Schaal B (2007) Olfactory function in children assessed with psychophysical and electrophysiological techniques. Behav Brain Res 180:133–138PubMedCrossRefGoogle Scholar
  12. Kobal G, Klimek L, Wolfensberger M, Gudziol H, Temmel A, Owen CM, Seeber H, Pauli E, Hummel T (2000) Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Otorhinolaryngol 257:205–211PubMedCrossRefGoogle Scholar
  13. Lledo PM, Gheusi G (2003) Olfactory processing in a changing brain. Neuroreport 14:1655–1663PubMedCrossRefGoogle Scholar
  14. Lledo PM, Saghatelyan A, Lemasson M (2004) Inhibitory interneurons in the olfactory bulb: from development to function. Neuroscientist 10:292–303PubMedCrossRefGoogle Scholar
  15. Marlier L, Schaal B, Soussignan R (1997) Orientation responses to biological odours in the human newborn. Initial pattern and postnatal plasticity. C R Acad Sci 3:999–1005Google Scholar
  16. Mueller A, Abolmaali ND, Hakimi AR, Gloeckler T, Herting B, Reichmann H, Hummel T (2005a) Olfactory bulb volumes in patients with idiopathic Parkinson’s disease—a pilot study. J Neural Transm 112:1363–1370PubMedCrossRefGoogle Scholar
  17. Mueller A, Rodewald A, Reden J, Gerber J, von Kummer R, Hummel T (2005b) Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport 16:475–478PubMedCrossRefGoogle Scholar
  18. Parent A, Carpenter MB (1996) Carpenter’s human neuroanatomy, vol 19. Williams and Wilkins, BaltimoreGoogle Scholar
  19. Richman RA, Post EM, Sheehe PR, Wright HN (1992) Olfactory performance during childhood.1. Development of an odorant identification test for children. J Pediatr 121:908–911PubMedCrossRefGoogle Scholar
  20. Richman RA, Post EM, Sheehe PR, Wright HN (2005) Olfactory performance during childhood—development of an odorant identification test for children. J Pediatr 121:908–911Google Scholar
  21. Rombaux P, Mouraux A, Bertrand B, Nicolas G, Duprez T, Hummel T (2006) Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116:436–439PubMedCrossRefGoogle Scholar
  22. Rombaux P, Mouraux A, Bertrand B, Duprez T, Hummel T (2007) Can we smell without an olfactory bulb? Am J Rhinol 21:548–550PubMedCrossRefGoogle Scholar
  23. Rouby C, Gautier B, Chevalier G, Dubois D (1997) Cannaissance et reconnaissance d’une série olfactive chez l’enfant préscolaire. Enfance 1:152–171CrossRefGoogle Scholar
  24. Schneider JF, Floemer F (2009) Maturation of the olfactory bulbs: MR imaging findings. AJNR Am J Neuroradiol 30:1149–1152PubMedCrossRefGoogle Scholar
  25. Schwartze P (1991) Die Entwicklung des Riechsinnes—eine Übersicht. Pädiatrie Grenzgeb 30:339–344Google Scholar
  26. Solbu EH (1990) Children’s sensitivity to odor of trimethylamine. J Chem Ecol 16:1829–1840CrossRefGoogle Scholar
  27. Thomann PA, Dos Santos V, Toro P, Schönknecht P, Essig M, Schröder J (2007) Reduced olfactory bulb and tract volume in early Alzheimer’s disease—a MRI study. Neurobiol Aging 30:838–841PubMedCrossRefGoogle Scholar
  28. Turetsky BI, Moberg PJ, Arnold SE, Doty RL, Gur RE (2003) Low olfactory bulb volume in first-degree relatives of patients with schizophrenia. Am J Psychiatr 160:703–708PubMedCrossRefGoogle Scholar
  29. WMA (1997) Recommendations guiding physicians in biomedical research involving human subjects. World Med Assoc Declar Helsinki—JAMA 277:925–926Google Scholar
  30. Wolfensberger M, Schnieper I, Welge-Lussen A (2000) “Sniffin’ sticks”: a new olfactory test battery. Acta Otolaryngol 120:303–306PubMedCrossRefGoogle Scholar
  31. Yousem DM, Geckle RJ, Bilker W, McKeown DA, Doty RL (1996a) MR evaluation of patients with congenital hyposmia or anosmia. Am J Radiol 166:439–443Google Scholar
  32. Yousem DM, Geckle RJ, Bilker WB, McKeown DA, Doty RL (1996b) Posttraumatic olfactory dysfunction: MR and clinical evaluation. AJNR Am J Neuroradiol 17:1171–1179PubMedGoogle Scholar
  33. Yousem DM, Geckle RJ, Doty RL, Bilker WB (1997) Reproducibility and reliability of volumetric measurements of olfactory eloquent structures. Acad Radiol 4:264–269PubMedCrossRefGoogle Scholar
  34. Yousem DM, Geckle RJ, Bilker WB, Doty RL (1998) Olfactory bulb and tract and temporal lobe volumes. Normative data across decades. Ann NY Acad Sci 855:546–555PubMedCrossRefGoogle Scholar
  35. Yousem DM, Geckle RJ, Bilker WB, Kroger H, Doty RL (1999) Posttraumatic smell loss: relationship of psychophysical tests and volumes of the olfactory bulbs and tracts and the temporal lobes. Acad Radiol 6:264–272PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • T. Hummel
    • 1
    Email author
  • M. Smitka
    • 2
  • S. Puschmann
    • 1
  • J. C. Gerber
    • 3
  • B. Schaal
    • 4
  • D. Buschhüter
    • 1
  1. 1.Department of OtorhinolaryngologyUniversity of Dresden Medical SchoolDresdenGermany
  2. 2.Department of PediatricsUniversity of Dresden Medical SchoolDresdenGermany
  3. 3.Department of NeuroradiologyUniversity of Dresden Medical SchoolDresdenGermany
  4. 4.Centre de GoutDijonFrance

Personalised recommendations