Experimental Brain Research

, 213:435 | Cite as

Levodopa medication does not influence motor inhibition or conflict resolution in a conditional stop-signal task in Parkinson’s disease

  • Ignacio Obeso
  • Leonora Wilkinson
  • Marjan Jahanshahi
Research Article

Abstract

Evidence from animal, clinical, and imaging studies suggests that the basal ganglia and their frontal connections mediate motor inhibition, but the role of dopamine remains unclear. The aim of our study was to investigate, for the first time, whether levodopa medication influences motor inhibition and conflict resolution on the conditional stop-signal reaction time task in patients with Parkinson’s disease (PD) tested on or off their medication. Sixteen PD patients and 17 healthy controls performed the conditional stop-signal reaction time (SSRT) task, which requires inhibition of responses when a stop signal is presented on “critical” trials. Additionally, on “non-critical” trials, participants are instructed to ignore the stop signal and respond, thus generating conflict between motor inhibition and initiation; and conflict-induced slowing (CIS) on these “non-critical” trials. Levodopa medication did not significantly influence response initiation, inhibition (SSRT) or the measure of conflict resolution (CIS). Compared to healthy controls, PD patients showed significantly worse response initiation and inhibition both on and off their levodopa medication. Our results suggest that motor inhibition or conflict-induced slowing on the conditional stop-signal RT task are not altered by dopamine replacement in PD. This conclusion is consistent with evidence from animal studies and clinical pharmacological investigations suggesting a role for noradrenaline in motor inhibition and impulsivity.

Keywords

Parkinson’s disease Fronto-striatal circuits Levodopa Dopamine Inhibition Conditional stop-signal task 

References

  1. Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54:1465–1468PubMedCrossRefGoogle Scholar
  2. Aron AR, Behrens TE, Smith S, Frank MJ, Poldrack RA (2007) Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J Neurosci 27(14):3743–3752PubMedCrossRefGoogle Scholar
  3. Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology (Berl) 205:273–283. doi:10.1007/s00213-009-1537-0 CrossRefGoogle Scholar
  4. Beck AT, Erbaugh J, Ward CH, Mock J, Mendelsohn M (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571PubMedGoogle Scholar
  5. Bloxham CA, Dick DJ, Moore M (1987) Reaction times and attention in Parkinson’s disease. J Neurol Neurosurg Psychiatry 50:1178–1183PubMedCrossRefGoogle Scholar
  6. Boureau YL, Dayan P (2011) Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36:74–97. doi:10.1038/npp.2010.151 PubMedCrossRefGoogle Scholar
  7. Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl) 152:362–375CrossRefGoogle Scholar
  8. Chamberlain SR, Sahakian BJ (2007) The neuropsychiatry of impulsivity. Curr Opin Psychiatry 20:255–261. doi:10.1097/YCO.0b013e3280ba4989 PubMedGoogle Scholar
  9. Chamberlain SR, Muller U, Blackwell AD, Robbins TW, Sahakian BJ (2006) Noradrenergic modulation of working memory and emotional memory in humans. Psychopharmacology (Berl) 188:397–407. doi:10.1007/s00213-006-0391-6 CrossRefGoogle Scholar
  10. Chamberlain SR, Del Campo N, Dowson J, Muller U, Clark L, Robbins TW, Sahakian BJ (2007) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984. doi:10.1016/j.biopsych.2007.03.003 PubMedCrossRefGoogle Scholar
  11. Chamberlain SR, Hampshire A, Muller U et al (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555. doi:10.1016/j.biopsych.2008.10.014 PubMedCrossRefGoogle Scholar
  12. Congdon E, Lesch KP, Canli T (2008) Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: implications for impulsivity. Am J Med Genet B Neuropsychiatr Genet 147B:27–32. doi:10.1002/ajmg.b.30557 PubMedCrossRefGoogle Scholar
  13. Cools R, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2008) Working memory capacity predicts dopamine synthesis capacity in the human striatum. J Neurosci 28:1208–1212. doi:10.1523/JNEUROSCI.4475-07.2008 PubMedCrossRefGoogle Scholar
  14. Crucian GP, Heilman K, Junco E, Maraist M, Owens WE, Foote KD, Okun MS (2007) The crossed response inhibition task in Parkinson’s disease: disinhibition hyperkinesia. Neurocase 13:158–164. doi:10.1080/13554790701448184 PubMedCrossRefGoogle Scholar
  15. de Wit H, Enggasser JL, Richards JB (2002) Acute administration of d-amphetamine decreases impulsivity in healthy volunteers. Neuropsychopharmacology 27:813–825. doi:10.1016/S0893-133X(02)00343-3 PubMedCrossRefGoogle Scholar
  16. Defer GL, Widner H, Marie RM, Remy P, Levivier M (1999) Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord 14:572–584PubMedCrossRefGoogle Scholar
  17. Del-Ben CM, Deakin JF, McKie S et al (2005) The effect of citalopram pretreatment on neuronal responses to neuropsychological tasks in normal volunteers: an FMRI study. Neuropsychopharmacology 30:1724–1734. doi:10.1038/sj.npp.1300728 PubMedCrossRefGoogle Scholar
  18. Eagle DM, Robbins TW (2003) Inhibitory control in rats performing a stop-signal reaction-time task: effects of lesions of the medial striatum and d-amphetamine. Behav Neurosci 117(6):1302–1317PubMedCrossRefGoogle Scholar
  19. Eagle DM, Tufft MR, Goodchild HL, Robbins TW (2007) Differential effects of modafinil and methylphenidate on stop-signal reaction time task performance in the rat, and interactions with the dopamine receptor antagonist cis-flupenthixol. Psychopharmacology (Berl) 192:193–206. doi:10.1007/s00213-007-0701-7 CrossRefGoogle Scholar
  20. Eagle DM, Allan ME, Wong JCK, Mar AC, Theobald DE, Robbins TW (2008a) Different effects of D1 and D2 receptor antagonists on the stop-signal task: comparison of effects in the dorsomedial striatum and nucleus accumbens core. In: Society for Neuroscience Annual Meeting, Washington, DCGoogle Scholar
  21. Eagle DM, Bari A, Robbins TW (2008b) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology (Berl) 199:439–456. doi:10.1007/s00213-008-1127-6 CrossRefGoogle Scholar
  22. Eagle DM, Wong JC, Allan ME, Mar AC, Theobald DE, Robbins TW (2011) Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci 31:7349–7356. doi:10.1523/JNEUROSCI.6182-10.2011 PubMedCrossRefGoogle Scholar
  23. Evans AH, Strafella AP, Weintraub D, Stacy M (2009) Impulsive and compulsive behaviors in Parkinson’s disease. Mov Disord 24:1561–1570. doi:10.1002/mds.22505 PubMedCrossRefGoogle Scholar
  24. Evenden JL (1999) Varieties of impulsivity. Psychopharmacology (Berl) 146:348–361CrossRefGoogle Scholar
  25. Fahn S, Elton RL, and members of the UPDRS Development Committee Unified Parkinson’s Disease Rating Scale (1987) In: Fahn SMC, Goldstein M, Clane DB (ed) Recent developments in Parkinson’s disease. Macmillan Healthcare Information, Florham Park (NJ), pp 153–163Google Scholar
  26. Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161PubMedCrossRefGoogle Scholar
  27. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state—practical method for grading cognitive state of patients for clinician. J Psychiatr Res 12:189–198PubMedCrossRefGoogle Scholar
  28. Frank MJ, Claus ED (2006) Anatomy of a decision: striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychol Rev 113:300–326. doi:10.1037/0033-295X.113.2.300 PubMedCrossRefGoogle Scholar
  29. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318:1309–1312. doi:10.1126/science.1146157 PubMedCrossRefGoogle Scholar
  30. Friedel RO (2004) Dopamine dysfunction in borderline personality disorder: a hypothesis. Neuropsychopharmacology 29:1029–1039. doi:10.1038/sj.npp.1300424 PubMedCrossRefGoogle Scholar
  31. Gauggel S, Rieger M, Feghoff TA (2004) Inhibition of ongoing responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:539–544PubMedGoogle Scholar
  32. Girotti F, Carella F, Grassi MP, Soliveri P, Marano R, Caraceni T (1986) Motor and cognitive performances of Parkinsonian patients in the on and off phases of the disease. J Neurol Neurosurg Psychiatry 49:657–660PubMedCrossRefGoogle Scholar
  33. Harrison AA, Everitt BJ, Robbins TW (1999) Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behav Brain Res 100:99–112PubMedCrossRefGoogle Scholar
  34. Hershey T, Black KJ, Hartlein J, Braver TS, Barch DM, Carl JL, Perlmutter JS (2004) Dopaminergic modulation of response inhibition: an fMRI study. Brain Res Cogn Brain Res 20:438–448. doi:10.1016/j.cogbrainres.2004.03.018 PubMedCrossRefGoogle Scholar
  35. Housden CR, O’Sullivan SS, Joyce EM, Lees AJ, Roiser JP (2010) Intact reward learning but elevated delay discounting in Parkinson’s disease patients with impulsive-compulsive spectrum behaviors. Neuropsychopharmacology 35:2155–2164. doi:10.1038/npp.2010.84 PubMedCrossRefGoogle Scholar
  36. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedCrossRefGoogle Scholar
  37. Jahanshahi M, Brown RG, Marsden CD (1992) The effect of withdrawal of dopaminergic medication on simple and choice reaction time and the use of advance information in Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:1168–1176PubMedCrossRefGoogle Scholar
  38. Jahanshahi M, Jones CR, Zijlmans J et al (2010) Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson’s disease. Brain 133:727–745. doi:10.1093/brain/awq012 PubMedCrossRefGoogle Scholar
  39. Kimberg DY, D’Esposito M, Farah MJ (1997) Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 8:3581–3585PubMedCrossRefGoogle Scholar
  40. Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91:295–327CrossRefGoogle Scholar
  41. Meck WH (1996) Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 3:227–242PubMedCrossRefGoogle Scholar
  42. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947PubMedGoogle Scholar
  43. Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl) 191:507–520. doi:10.1007/s00213-006-0502-4 CrossRefGoogle Scholar
  44. Obeso I, Wilkinson L, Casabona E et al (2011) Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 212:371–384Google Scholar
  45. Overtoom CC, Verbaten MN, Kemner C et al (2003) Effects of methylphenidate, desipramine, and L-dopa on attention and inhibition in children with attention deficit hyperactivity disorder. Behav Brain Res 145:7–15PubMedCrossRefGoogle Scholar
  46. Overtoom CC, Bekker EM, van der Molen MW, Verbaten MN, Kooij JJ, Buitelaar JK, Kenemans JL (2009) Methylphenidate restores link between stop-signal sensory impact and successful stopping in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 65:614–619. doi:10.1016/j.biopsych.2008.10.048 PubMedCrossRefGoogle Scholar
  47. Pullman SL, Watts RL, Juncos JL, Sanes JN (1990) Movement amplitude choice reaction time performance in Parkinson’s disease may be independent of dopaminergic status. J Neurol Neurosurg Psychiatry 53:279–283PubMedCrossRefGoogle Scholar
  48. Puumala T, Sirvio J (1998) Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Neuroscience 83:489–499PubMedCrossRefGoogle Scholar
  49. Rammsayer TH (2008) Neuropharmacological approaches to human timing. In: Grondin S (ed) Psychology of time. Emerald, Bingley, UK, pp 295–320Google Scholar
  50. Ray NJ, Jenkinson N, Brittain J et al (2009) The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia 47:2828–2834. doi:10.1016/j.neuropsychologia.2009.06.011 PubMedCrossRefGoogle Scholar
  51. Robinson ES, Eagle DM, Mar AC et al (2008) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037. doi:10.1038/sj.npp.1301487 PubMedCrossRefGoogle Scholar
  52. Rubinstein M, Phillips TJ, Bunzow JR et al (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90:991–1001PubMedCrossRefGoogle Scholar
  53. Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7:191–197PubMedCrossRefGoogle Scholar
  54. Tannock R, Schachar RJ, Carr RP, Chajczyk D, Logan GD (1989) Effects of methylphenidate on inhibitory control in hyperactive children. J Abnorm Child Psychol 17:473–491PubMedCrossRefGoogle Scholar
  55. Voon V, Reynolds B, Brezing C et al (2010) Impulsive choice and response in dopamine agonist-related impulse control behaviors. Psychopharmacology (Berl) 207:645–659. doi:10.1007/s00213-009-1697-y CrossRefGoogle Scholar
  56. Weintraub D, Siderowf AD, Potenza MN et al (2006) Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol 63:969–973. doi:10.1001/archneur.63.7.969 PubMedCrossRefGoogle Scholar
  57. Wiener M, Lohoff FW, Coslett HB (2011) Double dissociation of dopamine genes and timing in humans. J Cogn Neurosci. doi:10.1162/jocn.2011.21626
  58. Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130:1787–1798. doi:10.1093/brain/awm111 PubMedCrossRefGoogle Scholar
  59. Winstanley CA, Theobald DE, Dalley JW, Glennon JC, Robbins TW (2004) 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl) 176:376–385. doi:10.1007/s00213-004-1884-9 CrossRefGoogle Scholar
  60. Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW (2006) Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 16:106–114. doi:10.1093/cercor/bhi088 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ignacio Obeso
    • 1
  • Leonora Wilkinson
    • 1
    • 2
  • Marjan Jahanshahi
    • 1
  1. 1.Cognitive-Motor Neuroscience Group, Sobell Department of Motor Neuroscience and Movement DisordersUCL, Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
  2. 2.Brain Stimulation UnitNational Institute of Neurological Disorders and StrokeBethesdaUSA

Personalised recommendations