Advertisement

Experimental Brain Research

, 213:371 | Cite as

Habitual and goal-directed factors in (everyday) object handling

  • Oliver HerbortEmail author
  • Martin V. Butz
Research Article

Abstract

A habitual and a goal-directed system contribute to action selection in the human CNS. We examined to which extent both systems interact when selecting grasps for handling everyday objects. In Experiment 1, an upright or inverted cup had to be rotated or moved. To-be-rotated upright cups were more frequently grasped with a thumb-up grasp, which is habitually used to hold an upright cup, than inverted cups, which are not associated with a specific grasp. Additionally, grasp selection depended on the overarching goal of the movement sequence (rotation vs. transport) according to the end-state comfort principle. This shows that the habitual system and the goal-directed system both contribute to grasp selection. Experiment 2 revealed that this object-orientation-dependent grasp selection was present for movements of the dominant- and non-dominant hand. In Experiment 3, different everyday objects had to be moved or rotated. Only if different orientations of an object were associated with different habitual grasps, the grasp selection depended on the object orientation. Additionally, grasp selection was affected by the horizontal direction of the forthcoming movement. In sum, the experiments provide evidence that the interaction between the habitual and the goal-directed system determines grasp selection for the interaction with every-day objects.

Keywords

Habitual system Goal-directed system Grasping End-state comfort effect Object handling 

Supplementary material

221_2011_2787_MOESM1_ESM.docx (51 kb)
Supplementary material 1 (DOCX 51 kb)
221_2011_2787_MOESM2_ESM.docx (551 kb)
Supplementary material 2 (DOCX 551 kb)

References

  1. Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacol 37(4–5):407–419. doi: 10.1016/S0028-3908(98)00033-1 CrossRefGoogle Scholar
  2. Butz MV (2006) Rule-based evolutionary online learning systems. Springer, BerlinGoogle Scholar
  3. Butz MV, Herbort O, Hoffmann J (2007) Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture. Psychol Rev 114(4):1015–1046. doi: 10.1037/0033-295X.114.4.1015 PubMedCrossRefGoogle Scholar
  4. Cisek P (2007) Cortical mechanisms of action selection: the affordance competition hypothesis. Philos Trans R Soc B: Biol Sci 362:1585–1599. doi: 10.1098/rstb.2007.2054 CrossRefGoogle Scholar
  5. Cohen RG, Rosenbaum DA (2004) Where grasps are made reveals how grasps are planned: generation and recall of motor plans. Exp Brain Res 157:486–495PubMedCrossRefGoogle Scholar
  6. Coren S (1993) The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: norms for young adults. Bull Psychonomic Soc 31(1):1–3Google Scholar
  7. Creem SH, Proffitt DR (2001) Grasping objects by their handles: a necessary interaction between cognition and action. J Exp Psychol Hum Percept Perform 27(1):218–228PubMedCrossRefGoogle Scholar
  8. Cruse H (2003) The evolution of cognition—a hypothesis. Cogn Sci 27:135–155. doi: 10.1016/S0364-0213(02)00110-6 Google Scholar
  9. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711. doi: 10.1038/nn1560 PubMedCrossRefGoogle Scholar
  10. Frey SH (2008) Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philos Trans R Soc B Biol Sci 363(1499):1951–1957. doi: 10.1098/rstb.2008.0008 CrossRefGoogle Scholar
  11. Gentilucci M, Negrotti A, Gangitano M (1997) Planning an action. Exp Brain Res 115:116–128PubMedCrossRefGoogle Scholar
  12. Haggard P (1998) Planning of action sequences. Acta Psychol 99(2):201–215. doi: 10.1016/S0001-6918(98)00011-0 CrossRefGoogle Scholar
  13. Herbort O, Butz MV (2010) Planning and control of hand orientation in grasping movements. Exp Brain Res 202(4):867–878. doi: 10.1007/s00221-010-2191-9 PubMedCrossRefGoogle Scholar
  14. Herbort O, Butz MV (2011) The continuous end-state comfort effect: weighted integration of multiple biases. Psychol Res. doi: 10.1007/s00426-011-0334-7
  15. Herbort O, Butz MV, Pedersen G (2010) The SURE_REACH model for motor learning and control of a redundant arm: from modeling human behavior to applications in robotics. In: Sigaud O, Peters J (eds) From motor learning to interaction learning in robots. Springer, Heidelberg, pp 85–106CrossRefGoogle Scholar
  16. Janssen L, Beuting M, Meulenbroek R, Steenbergen B (2009) Combined effects of planning and execution constraints on bimanual task performance. Exp Brain Res 192(1):61–73. doi: 10.1007/s00221-008-1554-y PubMedCrossRefGoogle Scholar
  17. Janssen L, Meulenbroek R, Steenbergen B (2011) Behavioral evidence for left-hemisphere specialization of motor planning. Exp Brain Res 209(1):65–72. doi: 10.1007/s00221-010-2519-5 PubMedCrossRefGoogle Scholar
  18. Johnson SH (2000) Thinking ahead: the case for motor imagery in prospective judgements of prehension. Cogn 74(1):33–70. doi: 10.1016/S0010-0277(99)00063-3 Google Scholar
  19. Johnson-Frey SH, McCarty ME, Keen R (2004) Reaching beyond spatial perception: effects of intended future actions on visually guided prehension. Vis Cogn 11(2–3):371–399CrossRefGoogle Scholar
  20. Kelso JAS, Buchanan JJ, Murata T (1994) Multifunctionality and switching in the coordination dynamics of reaching and grasping. Hum Mov Sci 13(1):63–94. doi: 10.1016/0167-9457(94)90029-9 CrossRefGoogle Scholar
  21. Masson MEJ, Bub DN, Breuer AT (2011). Priming of reach and grasp actions by handled objects. J Exp Psychol: Hum Percept Perform. doi: 10.1037/a0023509
  22. McCarty ME, Clifton RK, Collard RR (1999) Problem solving in infancy: the emergence of an action plan. Dev Psychol 35:1091–1101PubMedCrossRefGoogle Scholar
  23. Owen AM (1997) Cognitive planning in humans: neuropsychological, neuroanatomical and neuropharmacological perspectives. Prog Neurobiol 53(4):431–450PubMedCrossRefGoogle Scholar
  24. Oztop E, Bradley NS, Arbib MA (2004) Infant grasp learning: a computational model. Exp Brain Res 158(4):480–503. doi: 10.1007/s00221-004-1914-1 PubMedCrossRefGoogle Scholar
  25. Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593. doi: 10.1146/annurev.neuro.25.112701.142937 Google Scholar
  26. Rosenbaum DA, Jorgensen MJ (1992) Planning macroscopic aspects of manual control. Hum Mov Sci 11(1–2):61–69. doi: 10.1016/0167-9457(92)90050-L CrossRefGoogle Scholar
  27. Rosenbaum DA, Marchak F, Barnes HJ, Vaughan J, Siotta JD, Jorgensen MJ (1990) Constraints for action selection: overhand versus underhand grips. In: Jeannerod M (ed) Attention and performance, vol XIII. Lawrence Erlbaum Associates, Hillsdale, pp 321–345Google Scholar
  28. Rosenbaum DA, Vaughan J, Barnes HJ, Jorgensen MJ (1992) Time course of movement planning: selection of handgrips for object manipulation. J Exp Psychol Learn Mem Cogn 18(5):1058–1073PubMedCrossRefGoogle Scholar
  29. Rosenbaum DA, van Heugten CM, Caldwell GE (1996) From cognition to biomechanics and back: the end-state comfort effect and the middle-is-faster effect. Acta Psychol 94:59–85CrossRefGoogle Scholar
  30. Rosenbaum DA, Meulenbroek RGJ, Vaughan J, Jansen C (2001) Posture-based motion planning: applications to grasping. Psychol Rev 108(4):709–734PubMedCrossRefGoogle Scholar
  31. Short MW, Cauraugh JH (1999) Precision hypothesis and the end-state comfort effect. Acta Psychol 100(3):243–252. doi: 10.1016/S0001-6918(98)00020-1 CrossRefGoogle Scholar
  32. Thibaut J-P, Toussaint L (2010) Developing motor planning over ages. J Exp Child Psychol 105(1–2):116–129. doi: 10.1016/j.jecp.2009.10.003 PubMedCrossRefGoogle Scholar
  33. Tucker M, Ellis R (1998) On the relations between seen objects and components of potential actions. J Exp Psychol Hum Percept Perform 24(3):830–846PubMedCrossRefGoogle Scholar
  34. Waszak F, Wascher E, Keller P, Koch I, Aschersleben G, Rosenbaum DA, Prinz W (2005) Intention-based and stimulus-based mechanisms in action selection. Exp Brain Res 162:346–356. doi: 10.1007/s00221-004-2183-8 PubMedCrossRefGoogle Scholar
  35. Weigelt M, Schack T (2010) The development of end-state comfort planning in preschool children. Exp Psychol 6:1–7. doi: 10.1027/1618-3169/a000059 Google Scholar
  36. Weigelt M, Kunde W, Prinz W (2006) End-state comfort in bimanual object manipulation. Exp Psychol 53(2):143–148. doi: 10.1027/1618-3169.53.2.143 PubMedGoogle Scholar
  37. Weigelt M, Rosenbaum DA, Huelshorst S, Schack T (2009) Moving and memorizing: motor planning modulates the recency effect in serial and free recall. Acta Psychol 132(1):68–79. doi: 10.1016/j.actpsy.2009.06.005 CrossRefGoogle Scholar
  38. Weiss DJ, Wark JD, Rosenbaum DA (2007) Monkey see, monkey plan, monkey do: the end-state comfort effect in cotton-top tamarins (Saguinus oedipus). Psychol Sci 18(12):1063–1068. doi: 10.1111/j.1467-9280.2007.02026.x PubMedCrossRefGoogle Scholar
  39. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476. doi: 10.1038/nrn1919 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of WürzburgWürzburgGermany

Personalised recommendations