Experimental Brain Research

, Volume 213, Issue 1, pp 9–14 | Cite as

Transcranial direct current stimulation’s effect on novice versus experienced learning

  • L. M. Bullard
  • E. S. Browning
  • V. P. Clark
  • B. A. Coffman
  • C. M. Garcia
  • R. E. Jung
  • A. J. van der Merwe
  • K. M. Paulson
  • A. A. Vakhtin
  • C. L. Wootton
  • M. P. Weisend
Research Article

Abstract

Transcranial direct current stimulation (TDCS) is a non-invasive form of brain stimulation applied via a weak electrical current passed between electrodes on the scalp. In recent studies, TDCS has been shown to improve learning when applied to the prefrontal cortex (e.g., Kincses et al. in Neuropsychologia 42:113–117, 2003; Clark et al. Neuroimage in 2010). The present study examined the effects of TDCS delivered at the beginning of training (novice) or after an hour of training (experienced) on participants’ ability to detect cues indicative of covert threats. Participants completed two 1-h training sessions. During the first 30 min of each training session, either 0.1 mA or 2.0 mA of anodal TDCS was delivered to the participant. The anode was positioned near F8, and the cathode was placed on the upper left arm. Testing trials immediately followed training. Accuracy in classification of images containing and not-containing threat stimuli during the testing sessions indicated: (1) that mastery of threat detection significantly increased with training, (2) that anodal TDCS at 2 mA significantly enhanced learning, and (3) TDCS was significantly more effective in enhancing test performance when applied in novice learners than in experienced learners. The enhanced performance following training with TDCS persisted into the second session when TDCS was delivered early in training.

Keywords

Transcranial direct current stimulation Learning Training Threat detection 

References

  1. Antal A, Varga ET, Kincses TZ, Nitsche MA, Paulus W (2004) Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport 15(Pt 8):1307–1310. doi:10.1097/01.wnr.0000127460.08361.84 PubMedCrossRefGoogle Scholar
  2. Antal A, Brepohl N, Poreisz C, Boros K, Csifcsak G, Paulus W (2008) Transcranial direct current stimulation over somatosensory cortex decrease experimentally induced acute pain perception. Clin J Pain 24(Pt 1):56–63. doi:10.1097/AJP.0b013e318157233b PubMedGoogle Scholar
  3. Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10:295–307PubMedCrossRefGoogle Scholar
  4. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, Jefferys JGR (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557(Pt. 1):175–190. doi:10.1113/jphysiol.2003.055772 PubMedCrossRefGoogle Scholar
  5. Bindman LJ, Lippold OCJ, Redfearn JWT (1962) Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature 196:584–585PubMedCrossRefGoogle Scholar
  6. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F (2007) Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 25:123–129PubMedGoogle Scholar
  7. Boggio PS, Sultani N, Fecteau S, Merabet L, Mecca T, Pascual-Leone A, Basaglia A, Fregni F (2008) Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depen 92(Pt. 1–3):55–60. doi:10.1016/j.drugalcdep.2007.06.011 CrossRefGoogle Scholar
  8. Chong TTJ, Williams MA, Cunnington R, Mattingley JB (2008) Selective attention modulates inferior frontal gyrus activity during action observation. Neuroimage 40:298–307. doi:10.1016/j.neuroimage.2007.11.030 PubMedCrossRefGoogle Scholar
  9. Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TDR, Calhoun VD, Raybourn EM, Garcia CM, Wassermann EM (2010) TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. doi:10.1016/j.neuroimage.2010.11.036
  10. Elmer S, Burkard M, Renz B, Meyer M, Jancke L (2009) Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behav Brain Funct 5(Pt. 29). doi:10.1186/1744-9081-5-29
  11. Floel A, Rosser N, Michka O, Knecht S, Breitenstein C (2008) Noninvasive brain stimulation improves language learning. J Cogn Neurosci 20(Pt. 8):1415–1422PubMedCrossRefGoogle Scholar
  12. Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E, Marcolin MA, Rigonatti AP, Silva MTA, Paulus W, Pascual-Leone A (2005) Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 166:23–30. doi:10.1007/s00221-005-2334-6 PubMedCrossRefGoogle Scholar
  13. Fregni F, Boggio PS, Lima MC, Ferreira MJL, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone A (2006) A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122(Pt. 1–2):197–209. doi:10.1016/j.pain.2006.02.023 PubMedCrossRefGoogle Scholar
  14. Goldman-Rakie PS, Cools AR, Srivastava K (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans Biol Sci 351(Pt. 1346):1445–1453CrossRefGoogle Scholar
  15. Hecht D, Walsh V, Lavidor M (2010) Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. J Neurosci 301(Pt. 12):4241–4245. doi:10.1523/JNEUROSCI.2924-09.2010 CrossRefGoogle Scholar
  16. Kincses TZ, Antal A, Nitsche MA, Bartfai O, Paulus W (2003) Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia 42:113–117. doi:10.1016/s0028-3932(03)00124-6 CrossRefGoogle Scholar
  17. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, Rothwell JC, Lemon RN, Frackowiak RS (2005) How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci 22(Pt. 2):495–504. doi:10.1111/j.1460-9568.2005.04233.x PubMedCrossRefGoogle Scholar
  18. Liebetanz D, Nitsche MA, Tergau F, Paulus W (2002) Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125:2238–2247PubMedCrossRefGoogle Scholar
  19. Lutz A, Greischar LL, Perlman DM, Davidson RJ (2009) BOLD signal in insula is differentially related to cardiac function during compassion meditation in experts vs. novices. Neuroimage 47:1038–1045. doi:10.1016/j.neuroimage.2009.04.081 PubMedCrossRefGoogle Scholar
  20. MacMillan J, Alexander AL, Weil SA, Littleton B, Aptima I, Woburn MA, Roberts B et al. (2005) DARWARS: An architecture that supports effective experimental training. DARWARS research papers. http://www.darwars.com/downloads/2005% 20IITSEC% 20White% 20Paper% 20v2.pdf
  21. McClure SM, York MK, Montague PR (2004) The neural substrates of reward processing in humans: the modern role of fMRI. Neuroscientist 10(Pt. 3):260–268. doi:10.1177/1073858404263526 PubMedCrossRefGoogle Scholar
  22. Merzagora AC, Foffani G, Panyavin I, Mordillo-Mateos L, Aguilar J, Onaral B, Oliviero A (2010) Prefrontal hemodynamic changes produced by anodal direct current stimulation. Neuroimage 49:2304–2310. doi:10.1016/j.neuroimage.2009.10.044 PubMedCrossRefGoogle Scholar
  23. Murphy DN, Boggio P, Fregni F (2009) Transcranial direct current stimulation as a therapeutic tool for the treatment of major depression: insights from past and recent clinical studies. Neuropsychiatry 22:306–311. doi:10.1097/YCO.0b013e32832a133f Google Scholar
  24. Nitsche MA, Paulus W (2000) Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 527(Pt. 3):633–639PubMedCrossRefGoogle Scholar
  25. Nitsche MA, Paulus W (2001) Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57:1899–1901PubMedGoogle Scholar
  26. Nitsche MA, Paulus W (2009) Noninvasive brain stimulation protocols in the treatment of epilepsy: current state and perspectives. Neurotherapeutics 6(Pt. 2):244–250PubMedCrossRefGoogle Scholar
  27. Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97:3109–3117. doi:10.1152/jn.01312.2006 PubMedCrossRefGoogle Scholar
  28. Ohn SH, Park C, Yoo WK, Ko MH, Choi KP, Kim GM, Lee YT, Kim YH (2008) Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport 19(Pt. 1):43–47PubMedCrossRefGoogle Scholar
  29. Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neuropsychol 114:589–595. doi:10.1016/s1388-2457(02)00437-6 Google Scholar
  30. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24(Pt. 13):3379–3385. doi:10.1523/JNEUROSCIE.5316-03.2004 PubMedCrossRefGoogle Scholar
  31. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H (2009) Polarity-sensitivity modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci 29(Pt. 16):5202–5206. doi:10.1523/JNEUROSCI.4432-08.2009 PubMedCrossRefGoogle Scholar
  32. Tecchio F, Zappasodi F, Assenza G, Tombini M, Vollaro S, Barbati G, Rossini PM (2010) Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol 104:1134–1140. doi:10.1152/jn.00661.2009 PubMedCrossRefGoogle Scholar
  33. Wassermann EM, Grafman J (2005) Recharging cognition with DC brain polarization. Trends Cogn Neurosci 9(Pt. 11):503–505. doi:10.1016/j.tics.2005.09.001 CrossRefGoogle Scholar
  34. Wright MJ, Bishop DT, Jackson RC, Abernethy B (2010) Functional MRI reveals expert-novice differences during sport-related anticipation. Neuroreport 21:94–98. doi:10.1097/WNR.0b013e328333dff2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • L. M. Bullard
    • 1
  • E. S. Browning
    • 2
  • V. P. Clark
    • 1
    • 2
  • B. A. Coffman
    • 1
    • 2
  • C. M. Garcia
    • 2
  • R. E. Jung
    • 1
    • 3
  • A. J. van der Merwe
    • 1
  • K. M. Paulson
    • 1
  • A. A. Vakhtin
    • 1
  • C. L. Wootton
    • 1
  • M. P. Weisend
    • 1
  1. 1.The Mind Research NetworkAlbuquerqueUSA
  2. 2.Psychology DepartmentUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of NeurosurgeryUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations