Advertisement

Experimental Brain Research

, Volume 211, Issue 3–4, pp 447–457 | Cite as

Joint action in a cooperative precision task: nested processes of intrapersonal and interpersonal coordination

  • Verónica C. RamenzoniEmail author
  • Tehran J. Davis
  • Michael A. Riley
  • Kevin Shockley
  • Aimee A. Baker
Research Article

Abstract

The authors determined the effects of changes in task demands on interpersonal and intrapersonal coordination. Participants performed a joint task in which one participant held a stick to which a circle was attached at the top (holding role), while the other held a pointer through the circle without touching its borders (pointing role). Experiment 1 investigated whether interpersonal and intrapersonal coordination varied depending on task difficulty. Results showed that interpersonal and intrapersonal coordination increased in degree and stability with increments in task difficulty. Experiment 2 explored the effects of individual constraints by increasing the balance demands of the task (one or both members of the pair stood in a less stable tandem stance). Results showed that interpersonal coordination increased in degree and stability as joint task demands increased and that coupling strength varied depending on joint and individual task constraints. In all, results suggest that interpersonal and intrapersonal coordination are affected by the nature of the task performed and the constraints it places on joint and individual performance.

Keywords

Interpersonal coordination Joint action Postural control 

References

  1. Amazeen PG, Schmidt RC, Turvey MT (1995) Frequency detuning of the phase entrainment dynamics of visually coupled rhythmic movements. Biol Cybern 72(6):511–518PubMedCrossRefGoogle Scholar
  2. Balasubramaniam R, Riley MA, Turvey MT (2000) Specificity of postural sway to the demands of a precision task. Gait Posture 11(1):12–24PubMedCrossRefGoogle Scholar
  3. Bernstein N (1967) Co-ordination and regulation of movements. Lancet 1(7500)Google Scholar
  4. Black DR, Riley MA, McCord CK (2007) Synergies in intra-and interpersonal interlimb rhythmic coordination. Mot Control 11(4):348–373Google Scholar
  5. Clark HH (1996) Using language. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Fowler CA, Richardson MJ, Marsh KL, Shockley KD (2008) Language use, coordination, and the emergence of cooperative action. Coordination: Neural, behavioral and social dynamics, pp 261–279–354Google Scholar
  7. Gatev P, Thomas S, Kepple T, Hallett M (1999) Feedforward ankle strategy of balance during quiet stance in adults. J Physiol—Lond 514(3):915–928PubMedCrossRefGoogle Scholar
  8. Gelfand IM, Tsetlin ML (1966) On mathematical modeling of the mechanisms of the central nervous system. In: Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (eds) Models of the structural-functional organization of certain biological systems. MIT Press, Cambridge, pp 9–26Google Scholar
  9. Knoblich G, Sebanz N (2006) The social nature of perception and action. Curr Dir Psychol Sci 15(3):99–104CrossRefGoogle Scholar
  10. Latash ML (2008) Neurophysiological basis of movement, 2nd edn. Human Kinetics, UrbanaGoogle Scholar
  11. Marsh KL, Richardson MJ, Baron RM, Schmidt RC (2006) Contrasting approaches to perceiving and acting with others. Ecol Psychol 18(1):1–38CrossRefGoogle Scholar
  12. Marsh KL, Richardson MJ, Schmidt RC (2009) Social connection through joint action and interpersonal coordination. Top Cogn Sci 1:320–339CrossRefGoogle Scholar
  13. Mitra S, Fraizer EV (2004) Effects of explicit sway-minimization on postural–suprapostural dual-task performance. Hum Mov Sci 23(1):1–20. doi: 10.1016/j.humov.2004.03.003.pii:S0167945704000193 PubMedCrossRefGoogle Scholar
  14. Oullier O, Deguzman G, Jantzen KJ, Lagarde J, Kelso JAS (2008) Social coordination dynamics: visual information exchange mediates spontaneous phase synchrony between people. Soc Neurosci 3:178–192PubMedCrossRefGoogle Scholar
  15. Pellecchia GL, Shockley K, Turvey MT (2005) Concurrent cognitive task modulates coordination dynamics. Cogn Sci 29(4):531–557CrossRefGoogle Scholar
  16. Ramenzoni VC, Riley MA, Shockley K, Baker AA (under review) Interpersonal and intrapersonal coordinative modes for joint and single task performanceGoogle Scholar
  17. Riccio GE, Stoffregen TA (1988) Affordances as constraints on the control of stance. Hum Mov Sci 7(2–4):265–300CrossRefGoogle Scholar
  18. Richardson D, Dale R (2005) Looking to understand: the coupling between speakers’ and listeners’ eye movements and its relationship to discourse comprehension. Cogn Sci (29):1045–1060Google Scholar
  19. Richardson DC, Dale R, Kirkham NZ (2007a) The art of conversation is coordination—common ground and the coupling of eye movements during dialogue. Psychol Sci 18(5):407–413PubMedCrossRefGoogle Scholar
  20. Richardson MJ, Schmidt RC, Kay BA (2007b) Distinguishing the noise and attractor strength of coordinated limb movements using recurrence analysis. Biol Cybern 96(1):59–78. doi: 10.1007/S00422-006-0104-6 PubMedCrossRefGoogle Scholar
  21. Richardson D, Dale R, Shockley K (2008) Synchrony and swing in conversation: coordination, temporal dynamics and communication. Embodied communication. Oxford University Press, OxfordGoogle Scholar
  22. Richardson MJ, Marsh KL, Schmidt RC (2010) Challenging egocentric notions of perceiving, acting and knowing. The mind in context. Guilford, New YorkGoogle Scholar
  23. Riley MA, Stoffregen TA, Grocki MJ, Turvey MT (1999) Postural stabilization for the control of touching. Hum Mov Sci 18(6):795–817CrossRefGoogle Scholar
  24. Riley MA, Richardson MJ, Shockley K, Ramenzoni VC (2011) Interpersonal synergies. Front Psychol 2:38Google Scholar
  25. Schmidt RC, O’brien B (1997) Evaluating the dynamics of unintended interpersonal coordination. Ecol Psychol 9(3):189–206CrossRefGoogle Scholar
  26. Schmidt RC, Richardson MJ (2008) Dynamics of interpersonal coordination. In: Jirsa AFV (ed) Coordination: neural, behavioral and social dynamics. Springer, Germany, pp 281–308CrossRefGoogle Scholar
  27. Schmidt RC, Turvey MT (1994) Phase-entrainment dynamics of visually coupled rhythmic movements. Biol Cybern 70(4):369–376PubMedCrossRefGoogle Scholar
  28. Schmidt RC, Carello C, Turvey MT (1990) Phase-transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol—Hum Percept Perform 16(2):227–247PubMedCrossRefGoogle Scholar
  29. Schmidt RC, Bienvenu M, Fitzpatrick P, Amazeen P (1998) A comparison of within- and between-person coordination: coordination breakdown and coupling strength. J Exp Psychol: Hum Percept Perform (24):884–900Google Scholar
  30. Sebanz N, Bekkering H, Knoblich G (2006) Joint action: bodies and minds moving together. Trends Cogn Sci 10(2):70–76. doi: 10.1016/J.Tics.2005.12.009 PubMedCrossRefGoogle Scholar
  31. Shockley K (2005) Cross recurrence quantification of interpersonal postural activity. In: Orden MARGCV (ed) Tutorials in contemporary nonlinear methods for the behavioral sciences, pp 142–177. http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp. Retrieved 5 May 2005
  32. Shockley K, Turvey MT (2005) Encoding and retrieval during bimanual rhythmic coordination. J Exp Psychol—Learn Mem Cogn 31(5):980–990. doi: 10.1037/0278-7393.31.5.980 PubMedCrossRefGoogle Scholar
  33. Shockley K, Turvey MT (2006) Dual-task influences on strategic retrieval and coordination dynamics. Psychon Bull Rev (13):985–990Google Scholar
  34. Shockley K, Butwill M, Zbilut JP, Webber CL (2002) Cross recurrence quantification of coupled oscillators. Phys Lett A 305(1–2):59–69 (pii: S0375-9601(02)01411-1)Google Scholar
  35. Shockley K, Santana MV, Fowler CA (2003) Mutual interpersonal postural constraints are involved in cooperative conversation. J Exp Psychol—Hum Percept Perform 29(2):326–332. doi: 10.1037/0096-1523.29.2.326 PubMedCrossRefGoogle Scholar
  36. Shockley K, Baker AA, Richardson MJ, Fowler CA (2007) Articulatory constraints on interpersonal postural coordination. J Exp Psychol—Hum Percept Perform 33(1):201–208. doi: 10.1037/0096-1523.33.1.201 PubMedCrossRefGoogle Scholar
  37. Shockley K, Richardson DC, Dale R (2009) Conversation and coordinative structures. Top Cogn Sci 1(2):305–319CrossRefGoogle Scholar
  38. Stoffregen TA, Smart LJ, Bardy BG, Pagulayan RJ (1999) Postural stabilization of looking. J Exp Psychol—Hum Percept Perform 25(6):1641–1658CrossRefGoogle Scholar
  39. Stoffregen TA, Pagulayan RJ, Bardy BG, Hettinger LJ (2000) Modulating postural control to facilitate visual performance. Hum Mov Sci 19(2):203–220CrossRefGoogle Scholar
  40. Stoffregen TA, Giveans MR, Villard S, Yank JR, Shockley K (2009) Interpersonal postural coordination on rigid and non-rigid surfaces. Mot Control 13(4):471–483Google Scholar
  41. Temprado JJ, Swinnen SP, Carson RG, Tourment A, Laurent M (2003) Interaction of directional, neuromuscular and egocentric constraints on the stability of preferred bimanual coordination patterns. Hum Mov Sci 22(3):339–363. doi: 10.1016/S0167-9457(03)00049-6 PubMedCrossRefGoogle Scholar
  42. Turvey MT (1977) Contrasting orientations to theory of visual information-processing. Psychol Rev 84(1):67–88CrossRefGoogle Scholar
  43. Turvey MT (1990) Coordination. Am Psychol 45(8):938–953PubMedCrossRefGoogle Scholar
  44. Turvey MT, Shaw RE, Mace W (1978) Issues in the theory of action: degrees of freedom, coordinative structures and coalitions. In: Requin J (ed) Attention and performance VII. Lawrence Erlbaum Associates, Hillsdale, pp 567–595Google Scholar
  45. Whiting HTA, Vogt S, Vereijken B (1992) Human skill and motor control: some aspects of the motor control-motor learning relation. In: Summers JJ (ed) Approaches to the study of motor control and learning. North Holland, Amsterdam, pp 81–111CrossRefGoogle Scholar
  46. Wilson M, Knoblich G (2005) The case for motor involvement in perceiving co-specifics. Psychol Bull (131):460–473Google Scholar
  47. Zbilut JP, Webber CL (1992) Embeddings and delays as derived from quantification of recurrence plots. Phys Lett A 171(3–4):199–203CrossRefGoogle Scholar
  48. Zbilut JP, Giuliani A, Webber CL (1998) Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys Lett A 246(1–2):122–128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Verónica C. Ramenzoni
    • 1
    • 2
    Email author
  • Tehran J. Davis
    • 1
  • Michael A. Riley
    • 1
  • Kevin Shockley
    • 1
  • Aimee A. Baker
    • 1
  1. 1.Department of PsychologyUniversity of CincinnatiCincinnatiUSA
  2. 2.Communication before LanguageMax Planck InstituteNijmegenThe Netherlands

Personalised recommendations