Experimental Brain Research

, Volume 209, Issue 1, pp 73–83 | Cite as

Where do we look when we walk on stairs? Gaze behaviour on stairs, transitions, and handrails

  • Veronica Miyasike-daSilva
  • Fran Allard
  • William E. McIlroyEmail author
Research Article


Stair walking is a challenging locomotor task, and visual information about the steps is considered critical to safely walk up and down. Despite the importance of such visual inputs, there remains relatively little information on where gaze is directed during stair walking. The present study investigated the role of vision during stair walking with a specific focus on gaze behaviour relative to (1) detection of transition steps between ground level and stairs, (2) detection of handrails, and (3) the first attempt to climb an unfamiliar set of stairs. Healthy young adults (n = 11) walked up and down a set of stairs with 7 steps (transitions were defined as the two top and bottom steps). Gaze behaviour was recorded using an eye tracker. Although participants spent most part of the time looking at the steps, gaze fixations on stair features covered less than 20% of the stair walking time. There was no difference in the overall number of fixations and fixation time directed towards transitions compared to the middle steps of the stairs. However, as participants approached and walked on the stairs, gaze was within 4 steps ahead of their location. The handrail was rarely the target of gaze fixation. It is noteworthy that these observations were similar even in the very first attempt to walk on the stairs. These results revealed the specific role of gaze behaviour in guiding immediate action and that stair transitions did not demand increased gaze behaviour in comparison with middle steps. These findings may also indicate that individuals may rely on a spatial representation built from previous experience and/or visual information other than gaze fixations (e.g. dynamic gaze sampling, peripheral visual field) to extract information from the surrounding environment.


Vision Locomotion Stair locomotion Gaze behaviour Gaze fixations 



This study was supported by the awards from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil). The authors thank Tasneem Patla for assistance with data collection.


  1. Aivar MP, Hayhoe MM, Chizk CL, Mruczek REB (2005) Spatial memory and saccadic targeting in a natural task. J Vis 5:177–193CrossRefPubMedGoogle Scholar
  2. Archea J, Collins BL, Stahl FI (1979) Guidelines for stair safety. National Bureau of Standards, Washington, DCGoogle Scholar
  3. Bateni H, Zecevic A, McIlroy WE, Maki BE (2004) Resolving conflicts in task demands during balance recovery: does holding an object inhibit compensatory grasping? Exp Brain Res 157:49–58CrossRefPubMedGoogle Scholar
  4. Berard JR, Vallis LA (2006) Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children. Exp Brain Res 175:21–31CrossRefPubMedGoogle Scholar
  5. Cavanagh PR, Higginson JS (2003) What is the role of vision during stair descent? In: Jeffrey A, Owens DA, Harvey LO (eds) Visual perception: the influence of H. W. Leibowitz decade of behaviour. American Psychological Association, Washington, pp 213–242CrossRefGoogle Scholar
  6. Cinelli ME, Patla AE, Allard F (2008) Strategies used to walk through a moving aperture. Gait Posture 27:595–602CrossRefPubMedGoogle Scholar
  7. Cinelli ME, Patla AE, Allard F (2009) Behaviour and gaze analyses during a goal-directed locomotor task. Q J Exp Psychol 62:483–499Google Scholar
  8. Cohen J, Cohen HH (2001) Hold on! An observational study of staircase handrail use. Hum Factors Ergon Soc Annu Meet Proc 45:1502–1506Google Scholar
  9. Davies JC, Kemp GJ, Stevens G, Frostick SP, Manning DP (2001) Bifocal/varifocal spectacles, lighting and missed-step accidents. Saf Sci 38:211–226CrossRefGoogle Scholar
  10. Ghafouri M, McIlroy WE, Maki BE (2004) Initiation of rapid reach-and-grasp balance reactions: is a pre-formed visuospatial map used in controlling the initial arm trajectory? Exp Brain Res 155:532–536CrossRefPubMedGoogle Scholar
  11. Hamel KA, Okita N, Bus SA, Cavanagh PR (2005) A comparison of foot/ground interaction during stair negotiation and level walking in young and older women. Ergon 48:1046–1047CrossRefGoogle Scholar
  12. Hassan SE, Hicks JC, Lei H, Turano KA (2007) What is the minimum field of view required for efficient navigation? Vis Res 47:2115–2123CrossRefPubMedGoogle Scholar
  13. Hollands MA, Marple-Horvat DE, Henkes S, Rowan AK (1995) Human eye movements during visually guided stepping. J Mot Behav 27(2):155–163CrossRefPubMedGoogle Scholar
  14. Hollands MA, Patla AE, Vickers JN (2002) “Look where you’re going!”: gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res 143:221–230CrossRefPubMedGoogle Scholar
  15. King E, Lee T, Maki B (2007) Does peripheral vision contribute to online control of grasping reactions evoked by an unexpected perturbation when walking in an unfamiliar environment? In: Proceedings of the 18th ISPGR Conference, 2007, p 84. Accessed 1 June 2009
  16. Konczak J, Meeuwsen HJ, Cress ME (1992) Changing affordances in stair climbing: the perception of maximum climbability in young and older adults. J Exp Psychol Hum Percept Perform 18:691–697CrossRefPubMedGoogle Scholar
  17. Land MF (2006) Eye movements and the control of actions in everyday life. Prog Retin Eye Res 25:296–324CrossRefPubMedGoogle Scholar
  18. Lee H, Chou L (2007) Balance control during stair negotiation in older adults. J Biomech 40:2530–2536CrossRefPubMedGoogle Scholar
  19. Lee DN, Lishman JR, Thomson JA (1982) Regulation of gait in long jumping. J Exp Psychol Hum Percept Perform 8:448–459CrossRefGoogle Scholar
  20. Lee T, Scovil C, McKay S, Peters A, Maki B (2007) Age-related differences in reach-to-grasp reactions and associated gaze behaviour evoked by unexpected perturbation when walking in an unfamiliar environment. In: Proceedings of the 18th ISPGR Conference, 2007, p 94. Accessed 1 June 2009
  21. Lord SR, Dayhew J, Howland A (2002) Multifocal glasses impair edge-contrast sensitivity and depth perception and increase the risk of falls in older people. J Am Geriatr Soc 50:1760–1766CrossRefPubMedGoogle Scholar
  22. Maki BE, McIlroy WE (2006) Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing 35(Suppl 2):ii12–ii18Google Scholar
  23. Maki BE, McIlroy WE (2007) Cognitive demands and cortical control of human balance-recovery reactions. J Neural Transm 114:1279–1296CrossRefPubMedGoogle Scholar
  24. Marigold D, Patla AE (2008) Visual information from the lower visual field is important for walking across multi-surface terrain. Exp Brain Res 188:23–31CrossRefPubMedGoogle Scholar
  25. McFadyen BJ, Carnahan H (1997) Anticipatory locomotor adjustments for accommodating versus avoiding level changes in humans. Exp Brain Res 114:500–506CrossRefPubMedGoogle Scholar
  26. McFadyen B, Bouyer L, Bent L, Inglis J (2007) Visual-vestibular influences on locomotor adjustments for stepping over an obstacle. Exp Brain Res 179:235–243CrossRefPubMedGoogle Scholar
  27. McKenzie BE, Forbes C (1992) Does vision guide stair climbing? A developmental study. Aust J Psychol 44:177–183CrossRefGoogle Scholar
  28. Mohagheghi A, Moraes R, Patla AE (2004) The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion. Exp Brain Res 155:459–468CrossRefPubMedGoogle Scholar
  29. Patla AE (1997) Understanding the roles of vision in the control of human locomotion. Gait Posture 5:54–69CrossRefGoogle Scholar
  30. Patla AE (1998) How is human gait controlled by vision. Ecol Psychol 10:287–302CrossRefGoogle Scholar
  31. Patla AE (2004) Gaze behaviour during adaptive human locomotion: insights into how vision is used to regulate locomotion. In: Vaina LM, Beardsley SA, Rushton SK (eds) Optic flow and beyond. Kluwer Academic Publishers, Norwell, pp 383–399Google Scholar
  32. Patla AE, Vickers JN (1997) Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport 8:3661–3665CrossRefPubMedGoogle Scholar
  33. Patla AE, Vickers JN (2003) How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp Brain Res 148:133–138CrossRefPubMedGoogle Scholar
  34. Patla AE, Adkin A, Martin C, Holden R, Prentice S (1996) Characteristics of voluntary visual sampling of the environment for safe locomotion over different terrains. Exp Brain Res 112:513–522CrossRefPubMedGoogle Scholar
  35. Patla AE, Prentice SD, Rietdyk S, Allard F, Martin C (1999) What guides the selection of alternate foot placement during locomotion in humans. Exp Brain Res 128:441–450CrossRefPubMedGoogle Scholar
  36. Rhea CK, Rietdyk S (2007) Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory. Neurosci Lett 418:60–65CrossRefPubMedGoogle Scholar
  37. Sheldon JH (1960) On the natural history of falls in old age. Br Med J 2:1685–1690CrossRefPubMedGoogle Scholar
  38. Simoneau GG, Cavanagh PR, Ulbrecht JS, Leibowitz HW, Tyrrell RA (1991) The influence of visual factors on fall-related kinematic variables during stair descent by older women. J Gerontol 46:M188–M195PubMedGoogle Scholar
  39. Templer J (1992) The staircase: studies of hazards falls and safer design. MIT Press, CambridgeGoogle Scholar
  40. Timmis M, Bennett S, Buckley J (2009) Visuomotor control of step descent: evidence of specialized role of the lower visual field. Exp Brain Res 195:219–227CrossRefPubMedGoogle Scholar
  41. Turano KA, Geruschat DR, Baker FH, Stahl JW, Shapiro MD (2001) Direction of gaze while walking a simple route: persons with normal vision and persons with retinitis pigmentosa. Optom Vis Sci 78:667–675CrossRefPubMedGoogle Scholar
  42. Warren WH (1984) Perceiving affordances: visual guidance of stair climbing. J Exp Psychol Hum Percept Perform 10:683–703CrossRefPubMedGoogle Scholar
  43. Warren WH, Hannon DJ (1990) Eye movements and optical flow. J Opt Soc Am Assoc 7:160–169CrossRefGoogle Scholar
  44. Warren WH, Kay BA, Zosh WD, Duchon AP, Sahuc S (2001) Optic flow is used to control human walking. Nat Neurosci 4:213–216CrossRefPubMedGoogle Scholar
  45. Wild D, Nayak USL, Isaacs B (1981) Description, classification and prevention of falls in old people at home. Rheumatol 20:153–159CrossRefGoogle Scholar
  46. Zietz D, Hollands M (2009) Gaze behaviour of young and older adults during stair walking. J Mot Behav 41:357–365CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Veronica Miyasike-daSilva
    • 1
  • Fran Allard
    • 1
  • William E. McIlroy
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of KinesiologyUniversity of WaterlooWaterlooCanada
  2. 2.Mobility TeamToronto Rehabilitation InstituteTorontoCanada
  3. 3.Heart and Stroke Foundation Centre for Stroke RecoveryTorontoCanada

Personalised recommendations