Experimental Brain Research

, Volume 208, Issue 4, pp 595–605 | Cite as

Stroop matching task: role of feature selection and temporal modulation

  • Isabel A. David
  • Eliane Volchan
  • Jaime Vila
  • Andreas Keil
  • Letícia de Oliveira
  • Aydamari J. P. Faria-Júnior
  • Pandelis Perakakis
  • Elisa C. Dias
  • Izabela Mocaiber
  • Mirtes G. Pereira
  • Walter Machado-Pinheiro
Research Article

Abstract

We conducted an event-related potential (ERP) study to investigate the electrocortical dynamics of attentional feature-based processing in the Stroop matching task. Participants in the study (n = 37) compared the ink color of a colored word with the meaning of a color–word in white ink. The two task stimuli were presented simultaneously or with SOAs (Stimulus Onset Asynchrony) of 400 and 1,200 ms. The Stroop matching effect was maximal during SOA-0, was reduced at SOA-400, and was inverted at SOA-1200. We focused the ERP analysis on the N1 component. Paralleling the behavioral results, the N1 amplitude was greater for congruent stimuli than incongruent stimuli during SOA-0. This difference was attenuated at SOA-400, and at SOA-1200, an inverse pattern was observed. The results provide evidence that early selection processing participated in the Stroop matching task phenomenon and also suggest that the temporal modulation of early attention is a function of task characteristics such as SOA.

Keywords

Stroop ERP Feature attention Matching task 

References

  1. Akyurek EG, Dinkelbach A, Schubo A, Muller HJ (2010a) Electrophysiological correlates of detecting a visual target and detecting its absence: the role of feature dimensions. Neuropsychologia 48:3365–3370CrossRefPubMedGoogle Scholar
  2. Akyurek EG, Schubo A, Hommel B (2010b) Fast temporal event integration in the visual domain demonstrated by event-related potentials. Psychophysiology 47:512–522CrossRefPubMedGoogle Scholar
  3. Anllo-Vento L, Hillyard SA (1996) Selective attention to the color and direction of moving stimuli: electrophysiological correlates of hierarchical feature selection. Percept Psychophys 58:191–206PubMedGoogle Scholar
  4. Anllo-Vento L, Luck SJ, Hillyard SA (1998) Spatio-temporal dynamics of attention to color: evidence from human electrophysiology. Hum Brain Mapp 6:216–238CrossRefPubMedGoogle Scholar
  5. Appelbaum LG, Meyerhoff KL, Woldorff MG (2009) Priming and backward influences in the human brain: processing interactions during the stroop interference effect. Cereb Cortex 19:2508–2521CrossRefPubMedGoogle Scholar
  6. Atkinson CM, Drysdale KA, Fulham WR (2003) Event-related potentials to stroop and reverse stroop stimuli. Int J Psychophysiol 47:1–21CrossRefPubMedGoogle Scholar
  7. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402:179–181CrossRefPubMedGoogle Scholar
  8. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108:624–652CrossRefPubMedGoogle Scholar
  9. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMedGoogle Scholar
  10. Durgin FH (2003) Translation and competition among internal representations in a reverse Stroop effect. Percept Psychophys 65:367–378CrossRefPubMedGoogle Scholar
  11. Dyer FN (1971) The duration of word meaning responses: Stroop interference for a different preexposures of the word. Psychon Sci 25:229–231Google Scholar
  12. Dyer FN (1973) Same and different judgments for word-color pairs with “irrelevant” words or colors: evidence for word-code comparisons. J Exp Psychol 98:102–108CrossRefPubMedGoogle Scholar
  13. Flowers JH (1975) “Sensory” interference in a word-color matching task. Percept Psychophys 18:37–43CrossRefGoogle Scholar
  14. Glaser M, Glaser W (1982) Time course analysis of the stroop phenomenon. J Exp Psychol 8:875–895Google Scholar
  15. Glaser WR, Glaser MO (1989) Context effects in stroop-like word and picture processing. J Exp Psychol Gen 118:13–42CrossRefPubMedGoogle Scholar
  16. Goldfarb L, Henik A (2006) New data analysis of the stroop matching task calls for a reevaluation of theory. Psychol Sci 17:96–100CrossRefPubMedGoogle Scholar
  17. Goldfarb L, Henik A (2007) Evidence for task conflict in the stroop effect. J Exp Psychol Hum Percept Perform 33:1170–1176CrossRefPubMedGoogle Scholar
  18. Hanslmayr S, Pastotter B, Bauml KH, Gruber S, Wimber M, Klimesch W (2008) The electrophysiological dynamics of interference during the stroop task. J Cogn Neurosci 20:215–225CrossRefPubMedGoogle Scholar
  19. Hillyard SA, Munte TF (1984) Selective attention to color and location: an analysis with event-related brain potentials. Percept Psychophys 36:185–198CrossRefPubMedGoogle Scholar
  20. Ilan AB, Polich J (1999) P300 and response time from a manual Stroop task. Clin Neurophysiol 110:367–373CrossRefPubMedGoogle Scholar
  21. Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, Sejnowski TJ (2000) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178CrossRefPubMedGoogle Scholar
  22. Keil A, Muller MM (2010) Feature selection in the human brain: electrophysiological correlates of sensory enhancement and feature integration. Brain Res 1313:172–184CrossRefPubMedGoogle Scholar
  23. Keil A, Smith JC, Wangelin BC, Sabatinelli D, Bradley MM, Lang PJ (2008) Electrocortical and electrodermal responses covary as a function of emotional arousal: a single-trial analysis. Psychophysiology 45:516–523CrossRefPubMedGoogle Scholar
  24. Kopp B, Tabeling S, Moschner C, Wessel K (2007) Temporal dynamics of selective attention and conflict resolution during cross-dimensional Go-NoGo decisions. BMC Neurosci 8:68CrossRefPubMedGoogle Scholar
  25. Liotti M, Woldorff MG, Perez R, Mayberg HS (2000) An ERP study of the temporal course of the stroop color-word interference effect. Neuropsychologia 38:701–711CrossRefPubMedGoogle Scholar
  26. Liu X, Banich MT, Jacobson BL, Tanabe JL (2006) Functional dissociation of attentional selection within PFC: response and non-response related aspects of attentional selection as ascertained by fMRI. Cereb Cortex 16:827–834CrossRefPubMedGoogle Scholar
  27. Luo CR (1999) Semantic competition as the basis of stroop interference: evidence from color-word matching task. Psychol Sci 10:35–40CrossRefGoogle Scholar
  28. Machado-Pinheiro W, Volchan E, Vila J, Dias EC, Alfradique I, Oliveira L, Pereira MG, David IA (2010) Role of attention and translation in conflict resolution: implications for Stroop matching task interference. Psychol Neurosci. Reference type: In pressGoogle Scholar
  29. MacLeod CM, MacDonald PA (2000) Interdimensional interference in the stroop effect: uncovering the cognitive and neural anatomy of attention. Trends Cogn Sci 4:383–391CrossRefPubMedGoogle Scholar
  30. Mangun GR (1995) Neural mechanisms of visual selective attention. Psychophysiology 32:4–18CrossRefPubMedGoogle Scholar
  31. Markela-Lerenc J, Ille N, Kaiser S, Fiedler P, Mundt C, Weisbrod M (2004) Prefrontal-cingulate activation during executive control: which comes first? Brain Res Cogn Brain Res 18:278–287CrossRefPubMedGoogle Scholar
  32. Mascolo MF, Hirtle SC (1990) Verbal coding and the elimination of stroop interference in a matching task. Am J Psychol 103:195–215CrossRefPubMedGoogle Scholar
  33. Milham MP, Banich MT (2005) Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Hum Brain Mapp 25:328–335CrossRefPubMedGoogle Scholar
  34. Mitchell RL (2006) Anterior cingulate activity and level of cognitive conflict: explicit comparisons. Behav Neurosci 120:1395–1401CrossRefPubMedGoogle Scholar
  35. Polk TA, Drake RM, Jonides JJ, Smith MR, Smith EE (2008) Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic resonance imaging study of the stroop task. J Neurosci 28:13786–13792CrossRefPubMedGoogle Scholar
  36. Rebai M, Bernard C, Lannou J (1997) The stroop’s test evokes a negative brain potential, the N400. Int J Neurosci 91:85–94CrossRefPubMedGoogle Scholar
  37. Schoenfeld MA, Hopf JM, Martinez A, Mai HM, Sattler C, Gasde A, Heinze HJ, Hillyard SA (2007) Spatio-temporal analysis of feature-based attention. Cereb Cortex 17:2468–2477CrossRefPubMedGoogle Scholar
  38. Silton RL, Heller W, Towers DN, Engels AS, Spielberg JM, Edgar JC, Sass SM, Stewart JL, Sutton BP, Banich MT, Miller GA (2010) The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage 50:1292–1302CrossRefPubMedGoogle Scholar
  39. Simon JR, Baker KL (1995) Effect of irrelevant information on the time to enter and retrieve relevant information in a stroop-type task. J Exp Psychol 21:1028–1043Google Scholar
  40. Simon JR, Berbaum K (1988) Effect of irrelevant information on retrieval time for relevant information. Acta Psychol 67:33–57CrossRefGoogle Scholar
  41. Slotnick SD, Schwarzbach J, Yantis S (2003) Attentional inhibition of visual processing in human striate and extra striate cortex. Neuroimage 19:1602–1611CrossRefPubMedGoogle Scholar
  42. Smid HG, Jakob A, Heinze HJ (1999) An event-related brain potential study of visual selective attention to conjunctions of color and shape. Psychophysiology 36:264–279CrossRefPubMedGoogle Scholar
  43. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–663CrossRefGoogle Scholar
  44. Sugg MJ, McDonald JE (1994) Time course of inhibition in color-response and word-response versions of the stroop task. J Exp Psychol Hum Percept Perform 20:647–675CrossRefPubMedGoogle Scholar
  45. Treisman A, Fearnley S (1969) The stroop test: selective attention to colours and words. Nature 222:437–439CrossRefPubMedGoogle Scholar
  46. Virzi RA, Egeth HE (1985) Toward a translational model of stroop interference. Mem Cognit 13:304–319CrossRefPubMedGoogle Scholar
  47. Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37:190–203CrossRefPubMedGoogle Scholar
  48. West R, Alain C (1999) Event-related neural activity associated with the stroop task. Cogn Brain Res 8:157–164CrossRefGoogle Scholar
  49. West R, Bowry R, McConville C (2004) Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology 41:739–748CrossRefPubMedGoogle Scholar
  50. Woldorff MG (1993) Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology 30:98–119CrossRefPubMedGoogle Scholar
  51. Wuhr P, Waszak F (2003) Object-based attentional selection can modulate the stroop effect. Mem Cognit 31:983–994CrossRefPubMedGoogle Scholar
  52. Zhang W, Luck SJ (2009) Feature-based attention modulates feed forward visual processing. Nat Neurosci 12:24–25CrossRefPubMedGoogle Scholar
  53. Zysset S, Muller K, Lohmann G, von Cramon DY (2001) Color-word matching stroop task: separating interference and response conflict. Neuroimage 13:29–36CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Isabel A. David
    • 1
  • Eliane Volchan
    • 3
  • Jaime Vila
    • 4
  • Andreas Keil
    • 5
  • Letícia de Oliveira
    • 1
  • Aydamari J. P. Faria-Júnior
    • 6
  • Pandelis Perakakis
    • 4
  • Elisa C. Dias
    • 7
  • Izabela Mocaiber
    • 2
  • Mirtes G. Pereira
    • 1
  • Walter Machado-Pinheiro
    • 2
  1. 1.Departamento de Fisiologia e Farmacologia, Instituto BiomédicoUniversidade Federal FluminenseSão Domingos, NiteróiBrazil
  2. 2.Departamento InterdisciplinarUniversidade Federal FluminenseRio das OstrasBrazil
  3. 3.Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Facultad de Psicología, Departamento de Personalidad, Evaluación y Tratamiento PsicológicoUniversidad de GranadaGranadaSpain
  5. 5.Department of Psychology, NIMH Center for the Study of Emotion and AttentionUniversity of FloridaGainesvilleUS
  6. 6.Departamento de PesquisaUniversidade Federal do AmapáMacapáBrazil
  7. 7.Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUS

Personalised recommendations