Experimental Brain Research

, Volume 208, Issue 1, pp 11–19 | Cite as

Modulation of the response to a somatosensory stimulation of the hand during the observation of manual actions

  • Julien I. A. Voisin
  • Erika C. Rodrigues
  • Sébastien Hétu
  • Philip L. Jackson
  • Claudia D. Vargas
  • Francine Malouin
  • C. Elaine Chapman
  • Catherine Mercier
Research Article

Abstract

Observation of hand movements has been repeatedly demonstrated to increase the excitability of the motor cortical representation of the hand. Little attention, however, has been devoted to its effect on somatosensory processing. Movement execution is well known to decrease somatosensory cortical excitability, a phenomenon termed ‘gating’. As executed and observed actions share common cortical representations, we hypothesized that action observation (hand movements) should also modulate the cortical response to sensory stimulation of the hand. Seventeen healthy subjects participated in these experiments in which electroencephalographic (EEG) recordings of the somatosensory steady-state response (SSSR) were obtained. The SSSR provides a continuous measure of somatosensory processing. Recordings were made during a baseline condition and five observation conditions in which videos showed either a: (1) hand action; (2) passive stimulation of a hand; (3) static hand; (4) foot action; or (5) static object. The method employed consisted of applying a continuous 25 Hz vibratory stimulation to the index finger during the six conditions and measuring potential gating effects in the SSSR within the 25 Hz band (corresponding to the stimulation frequency). A significant effect of condition was found over the contralateral parietal cortex. Observation of hand actions resulted in a significant gating effect when compared to baseline (average gating of 22%). Observation of passive touch of the hand also gated the response (17% decrease). In conclusion, the results show that viewing a hand performing an action or being touched interferes with the processing of somatosensory information arising from the hand.

Keywords

EEG Gating Shared representations Mirror neurons Action observation 

Notes

Acknowledgments

This work was supported by a grant from the Réseau Provincial de Recherche en Adaptation-Réadaptation (REPAR). SH was supported by scholarships from the Centre Interdisciplinaire de Recherche en Réadaptation et en Intégration Sociale (CIRRIS) and from the Fonds de la Recherche en Santé du Québec (FRSQ) and the Canadian Institutes of Health Research (CIHR). PJ and CM were supported by salary awards from FRSQ and CIHR. CDV was supported by CNPQ, CAPES, FAPERJ and IBN-net. Authors thank P.-O. Lauzon for software development and assistance in data collection.

References

  1. Aglioti SM, Cesari P, Romani M, Urgesi C (2008) Action anticipation and motor resonance in elite basketball players. Nat Neurosci 11:1109–1116PubMedCrossRefGoogle Scholar
  2. Avikainen S, Forss N, Hari R (2002) Modulated activation of the human SI and SII cortices during observation of hand actions. Neuroimage 15:640–646PubMedCrossRefGoogle Scholar
  3. Aziz-Zadeh L, Maeda F, Zaidel E, Mazziotta J, Iacoboni M (2002) Lateralization in motor facilitation during action observation: a TMS study. Exp Brain Res 144:127–131PubMedCrossRefGoogle Scholar
  4. Babiloni C, Babiloni F, Carducci F, Cincotti F, Cocozza G, Del PC, Moretti DV, Rossini PM (2002) Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study. Neuroimage 17:559–572PubMedCrossRefGoogle Scholar
  5. Blakemore SJ, Bristow D, Bird G, Frith C, Ward J (2005) Somatosensory activations during the observation of touch and a case of vision-touch synaesthesia. Brain 128:1571–1583PubMedCrossRefGoogle Scholar
  6. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13:400–404PubMedGoogle Scholar
  7. Bufalari I, Aprile T, Avenanti A, Di Russo F, Aglioti SM (2007) Empathy for pain and touch in the human somatosensory cortex. Cer Cortex 17:2553–2561CrossRefGoogle Scholar
  8. Burke D, Gandevia SC (1988) Interfering cutaneous stimulation and muscle afferent contribution to cortical potentials. Electroencephalogr Clin Neurophysiol 70:118–125PubMedCrossRefGoogle Scholar
  9. Caetano G, Jousmäki V, Hari R (2007) Actor’s and observer’s primary motor cortices stabilize similarly after seen or heard motor actions. Proc Natl Acad Sci USA 104:9058–9062PubMedCrossRefGoogle Scholar
  10. Celnik P, Webster B, Glasser DM, Cohen LG (2008) Effects of action observation on physical training after stroke. Stroke 39:1814–1820PubMedCrossRefGoogle Scholar
  11. Chan BL, Witt R, Charrow AP, Magee A, Howard R, Pasquina PF, Heilman KM, Tsao JW (2007) Mirror therapy for phantom limb pain. N Eng J Med 357:2206–2207CrossRefGoogle Scholar
  12. Chapman CE (1994) Active versus passive touch: factors influencing the transmission of somatosensory signals to primary somatosensory cortex. Can J Physiol Pharmacol 72:558–570PubMedGoogle Scholar
  13. Chapman CE, Jiang W, Lamarre Y (1988) Modulation of lemniscal input during conditioned arm movements in the monkey. Exp Brain Res 72:316–334PubMedCrossRefGoogle Scholar
  14. Cheng Y, Lee PL, Yang CY, Lin CP, Hung D, Decety J (2008) Gender differences in the mu rhythm of the human mirror-neuron system. PLoS ONE 3:e2113PubMedCrossRefGoogle Scholar
  15. Cheron G, Dan B, Borenstein S (2000) Sensory and motor interfering influences on somatosensory evoked potentials. J Clin Neurophysiol 17:280–294PubMedCrossRefGoogle Scholar
  16. Clark S, Tremblay F, Ste-Marie D (2004) Differential modulation of corticospinal excitability during observation, mental imagery and imitation of hand actions. Neuropsychologia 42:105–112PubMedCrossRefGoogle Scholar
  17. Cochin S, Barthelemy C, Lejeune B, Roux S, Martineau J (1998) Perception of motion and qEEG activity in human adults. Electroencephalogr Clin Neurophysiol 107:287–295PubMedCrossRefGoogle Scholar
  18. Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci 11:1839–1842PubMedCrossRefGoogle Scholar
  19. Dionne JK, Meehan SK, Legon W, Staines WR (2010) Crossmodal influences in somatosensory cortex: Interaction of vision and touch. Hum Brain Mapp 31:14–25PubMedGoogle Scholar
  20. Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F, Buccino G (2007) Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage 36:T164–T173PubMedCrossRefGoogle Scholar
  21. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophys 73:2608–2611Google Scholar
  22. Fadiga L, Craighero L, Olivier E (2005) Human motor cortex excitability during the perception of others’ action. Curr Opin Neurobiol 15:213–218PubMedCrossRefGoogle Scholar
  23. Gangitano M, Mottaghy FM, Pascual-Leone A (2001) Phase-specific modulation of cortical motor output during movement observation. Neuroreport 12:1489–1492PubMedCrossRefGoogle Scholar
  24. Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI aata. Cer Cortex 19:1239–1255CrossRefGoogle Scholar
  25. Ghez C, Pisa M (1972) Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res 40:145–151PubMedCrossRefGoogle Scholar
  26. Giabbiconi CM, Dancer C, Zopf R, Gruber T, Müller MM (2004) Selective spatial attention to left or right hand flutter sensation modulates the steady-state somatosensory evoked potential. Brain Res Cogn Brain Res 20:58–66PubMedCrossRefGoogle Scholar
  27. Giabbiconi CM, Trujillo-Barreto NJ, Gruber T, Muller MM (2007) Sustained spatial attention to vibration is mediated in primary somatosensory cortex. Neuroimage 35:255–262PubMedCrossRefGoogle Scholar
  28. Hamalainen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497CrossRefGoogle Scholar
  29. Jiang W, Chapman CE, Lamarre Y (1990) Modulation of somatosensory evoked responses in the primary somatosensory cortex produced by intracortical microstimulation of the motor cortex in the monkey. Exp Brain Res 80:333–344PubMedCrossRefGoogle Scholar
  30. Jones SJ, Power C (1984) Scalp topography of human SEPs: the effect of interfering tactile stimuli applied to the hand. Electroencephalogr Clin Neurophysiol 58:25–36PubMedCrossRefGoogle Scholar
  31. Kelly EF, Folger SE (1999) EEG evidence of stimulus-directed response dynamics in human somatosensory cortex. Brain Res 815:326–336PubMedCrossRefGoogle Scholar
  32. Maeda F, Kleiner-Fisman G, Pascual-Leone A (2002) Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. J Neurophys 87:1329–1335Google Scholar
  33. Mercier C, Sirigu A (2009) Training with virtual visual feedback to alleviate phantom limb pain. Neurorehab Neural Rep 23:587–594CrossRefGoogle Scholar
  34. Moseley GL (2006) Graded motor imagery for pathologic pain: a randomized controlled trial. Neurology 67:2129–2134PubMedCrossRefGoogle Scholar
  35. Muthukumaraswamy SD, Johnson BW (2004a) Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophys 115:1760–1766CrossRefGoogle Scholar
  36. Muthukumaraswamy SD, Johnson BW (2004b) Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology 41:152–156PubMedCrossRefGoogle Scholar
  37. Nangini C, Ross B, Tam F, Graham SJ (2006) Magnetoencephalographic study of vibrotactile evoked transient and steady-state responses in human somatosensory cortex. Neuroimage 33:252–262PubMedCrossRefGoogle Scholar
  38. Noss RS, Boles CD, Yingling CD (1996) Steady-state analysis of somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol 100:453–461PubMedGoogle Scholar
  39. Oouchida Y, Okada T, Nakashima T, Matsumura M, Sadato N, Naito E (2004) Your hand movements in my somatosensory cortex: a visuo-kinesthetic function in human area 2. Neuroreport 15:2019–2023PubMedCrossRefGoogle Scholar
  40. Orgs G, Dombrowski JH, Heil M, Jansen-Osmann P (2008) Expertise in dance modulates alpha/beta event-related desynchronization during action observation. Eur J Neurosci 27:3380–3384PubMedCrossRefGoogle Scholar
  41. Patuzzo S, Fiaschi A, Manganotti P (2003) Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia 41:1272–1278PubMedCrossRefGoogle Scholar
  42. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187PubMedCrossRefGoogle Scholar
  43. Pineda JA (2005) The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev 50:57–68PubMedCrossRefGoogle Scholar
  44. Pineda JA, Allison BZ, Vankov A (2000) The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP’s): toward a brain-computer interface (BCI). IEEE Trans Rehabil Eng 8:219–222PubMedCrossRefGoogle Scholar
  45. Ramachandran VS, Rogers-Ramachandran D (2008) Sensations referred to a patient’s phantom arm from another subjects intact arm: perceptual correlates of mirror neurons. Med Hypotheses 70:1233–1234PubMedCrossRefGoogle Scholar
  46. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–192PubMedCrossRefGoogle Scholar
  47. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3:131–141CrossRefGoogle Scholar
  48. Rossi S, Tecchio F, Pasqualetti P, Ulivelli M, Pizzella V, Romani GL, Passero S, Battistini N, Rossini PM (2002) Somatosensory processing during movement observation in humans. Clin Neurophysiol 113:16–24PubMedCrossRefGoogle Scholar
  49. Salmelin R, Hari R (1994) Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalogr Clin Neurophysiol 91:237–248PubMedCrossRefGoogle Scholar
  50. Schaefer M, Xu B, Flor H, Cohen LG (2009) Effects of different viewing perspectives on somatosensory activations during observation of touch. Hum Brain Mapp 30:2722–2730PubMedCrossRefGoogle Scholar
  51. Seki K, Perlmutter SI, Fetz EE (2003) Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nat Neurosci 6:1309–1316PubMedCrossRefGoogle Scholar
  52. Snyder AZ (1992) Steady-state vibration evoked potentials: descriptions of technique and characterization of responses. Electroencephalogr Clin Neurophysiol 84:257–268PubMedCrossRefGoogle Scholar
  53. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P, Sawaki L, Ungerleider L, Classen J (2005) Formation of a motor memory by action observation. J Neurosci 25:9339–9346PubMedCrossRefGoogle Scholar
  54. Strafella AP, Paus T (2000) Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport 11:2289–2292PubMedCrossRefGoogle Scholar
  55. Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162PubMedCrossRefGoogle Scholar
  56. Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522PubMedCrossRefGoogle Scholar
  57. Tobimatsu S, Zhang YM, Kato M (1999) Steady-state vibration somatosensory evoked potentials: physiological characteristics and tuning function. Clin Neurophysiol 110:1953–1958PubMedCrossRefGoogle Scholar
  58. Tobimatsu S, Zhang YM, Suga R, Kato M (2000) Differential temporal coding of the vibratory sense in the hand and foot in man. Clin Neurophysiol 111:398–404PubMedCrossRefGoogle Scholar
  59. Tremblay C, Robert M, Pascual-Leone A, Lepore F, Nguyen DK, Carmant L, Bouthillier A, Theoret H (2004) Action observation and execution: intracranial recordings in a human subject. Neurology 63:937–938PubMedGoogle Scholar
  60. Yavuzer G, Selles R, Sezer N, Sutbeyaz S, Bussmann JB, Koseoglu F, Atay MB, Stam HJ (2008) Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil 89:393–398PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Julien I. A. Voisin
    • 1
    • 2
  • Erika C. Rodrigues
    • 3
    • 4
  • Sébastien Hétu
    • 1
    • 5
  • Philip L. Jackson
    • 1
    • 5
  • Claudia D. Vargas
    • 3
  • Francine Malouin
    • 1
    • 2
  • C. Elaine Chapman
    • 6
  • Catherine Mercier
    • 1
    • 2
  1. 1.Institut de réadaptation en déficience physique de QuébecCentre interdisciplinaire de recherche en réadaptation et en intégration socialeQuebecCanada
  2. 2.Département de réadaptationUniversité LavalQuebecCanada
  3. 3.IBCCFFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Centro Universitário Augusto Motta (UNISUAM)Rio de JaneiroBrazil
  5. 5.École de PsychologieUniversité LavalQuebecCanada
  6. 6.Groupe de recherche sur le système nerveux central, Département de physiologie & École de réadaptationUniversité de MontréalMontrealCanada

Personalised recommendations