Experimental Brain Research

, Volume 205, Issue 4, pp 559–570 | Cite as

Short-term habituation of auditory evoked potential and neuromagnetic field components in dependence of the interstimulus interval

Research Article

Abstract

Repeated auditory stimulation results usually in a response decrement of event-related potential components. In the current study, we investigated the impact of the interstimulus interval (ISI) on the response decrement. Healthy subjects were stimulated with trains of five tones, with an ISI of 600, 1,200, or 1,800 ms within the trains. Auditory evoked potentials (AEP) were recorded from the vertex, as well as neuromagnetic auditory evoked fields (AEF) from the left temporal region. Stimulus repetition led to a response decrement for the studied AEP components (N100 and P200) and AEF components (N100m and P200m). However, for all used ISIs, there was no further response decrement after the 2nd stimulus. The ISI affected only the magnitude but not the kind of the response decrement. No evidence for a gradual response decrement was revealed at any used ISI. This finding indicates that the response decrement is probably due to the refractoriness of cell assemblies involved in the generation of AEP and AEF components, rather than the result of a genuine habituation process. The finding questions habituation as the mechanism behind short-term decrements of AEP/AEF components.

Keywords

Electroencephalography (EEG) Auditory cortex Magnetoencephalography (MEG) Sensory gating 

References

  1. Barry RJ, Cocker KI, Anderson JW, Gordon E, Rennie C (1992) Does the N100 evoked potential really habituate? Evidence from a paradigm appropriate to a clinical setting. Int J Psychophysiol 13:9–16CrossRefPubMedGoogle Scholar
  2. Bourbon WT, Will KW, Gary HE Jr, Papanicolaou AC (1987) Habituation of auditory event-related potentials: a comparison of self-initiated and automated stimulus trains. Electroencephalogr Clin Neurophysiol 66:160–166CrossRefPubMedGoogle Scholar
  3. Bramon E, Rabe-Hesketh SA, Sham P, Murray RM, Frangou S (2004) Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res 70:315–329CrossRefPubMedGoogle Scholar
  4. Budd TW, Michie PT (1994) Facilitation of the N1 peak of the auditory ERP at short stimulus intervals. Neuroreport 5:2513–2516CrossRefPubMedGoogle Scholar
  5. Budd TW, Barry RJ, Gordon E, Rennie C, Michie PT (1998) Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. Int J Psychophysiol 31:51–68CrossRefPubMedGoogle Scholar
  6. Christoffersen GR (1997) Habituation: events in the history of its characterization and linkage to synaptic depression. A new proposed kinetic criterion for its identification. Prog Neurobiol 53:45–66CrossRefPubMedGoogle Scholar
  7. Clementz BA, Blumenfeld LD, Cobb S (1997) The gamma band response may account for poor P50 suppression in schizophrenia. Neuroreport 8:3889–3893CrossRefPubMedGoogle Scholar
  8. Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56:38–51CrossRefPubMedGoogle Scholar
  9. Cowan N (1984) On short and long auditory stores. Psychol Bull 96:341–370CrossRefPubMedGoogle Scholar
  10. Crowley KE, Colrain IM (2004) A review of the evidence for P2 being an independent component process: age, sleep and modality. Clin Neurophysiol 115:732–744CrossRefPubMedGoogle Scholar
  11. Davis PA (1939) Effects of acoustic stimuli on the waling human brain. J Neurophysiol 2:494–499Google Scholar
  12. Davis H, Mast T, Yoshie N, Zerlin S (1966) The slow response of the human cortex to auditory stimuli: recovery process. Electroencephalogr Clin Neurophysiol 21:105–113CrossRefPubMedGoogle Scholar
  13. Fruhstorfer H, Soveri P, Jarvilehto T (1970) Short-term habituation of the auditory evoked response in man. Electroencephalogr Clin Neurophysiol 28:153–161CrossRefPubMedGoogle Scholar
  14. Fuentemilla L, Marco-Pallares J, Gual A, Escera C, Polo MD, Grau C (2009) Impaired theta phase-resetting underlying auditory N1 suppression in chronic alcoholism. Neuroreport 20:337–342CrossRefPubMedGoogle Scholar
  15. Fuerst DR, Gallinat J, Boutros NN (2007) Range of sensory gating values and test-retest reliability in normal subjects. Psychophysiology 44:620–626CrossRefPubMedGoogle Scholar
  16. Giffin NJ, Kaube H (2002) The electrophysiology of migraine. Curr Opin Neurol 15:303–309CrossRefPubMedGoogle Scholar
  17. Givois V, Pollack GS (2000) Sensory habituation of auditory receptor neurons: implications for sound localization. J Exp Biol 203:2529–2537PubMedGoogle Scholar
  18. Gratton G, Coles MG, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484CrossRefPubMedGoogle Scholar
  19. Grau C, Fuentemilla L, Marco-Pallares J (2007) Functional neural dynamics underlying auditory event-related N1 and N1 suppression response. Neuroimage 36:522–531CrossRefPubMedGoogle Scholar
  20. Hackley SA, Woldorff M, Hillyard SA (1990) Cross-modal selective attention effects on retinal, myogenic, brainstem, and cerebral evoked potentials. Psychophysiology 27:195–208CrossRefPubMedGoogle Scholar
  21. Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54:561–569CrossRefPubMedGoogle Scholar
  22. Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182:177–180CrossRefPubMedGoogle Scholar
  23. Hong LE, Summerfelt A, McMahon RP, Thaker GK, Buchanan RW (2004) Gamma/beta oscillation and sensory gating deficit in schizophrenia. Neuroreport 15:155–159CrossRefPubMedGoogle Scholar
  24. Hong LE, Buchanan RW, Thaker GK, Shepard PD, Summerfelt A (2008) Beta (~16 Hz) frequency neural oscillations mediate auditory sensory gating in humans. Psychophysiology 45:197–204CrossRefPubMedGoogle Scholar
  25. Krasne FB, Teshiba TM (1995) Habituation of an invertebrate escape reflex due to modulation by higher centers rather than local events. Proc Natl Acad Sci USA 92:3362–3366CrossRefPubMedGoogle Scholar
  26. Lammertmann C, Fujiki N, Lütkenhöner B, Hari R (2001) Short-term decrement of the auditory N1m response. In: Nenonen J, Ilmoniemi RJ, Katila T (eds) Biomag 2000, Proceedings of 12th International Conference on Biomagnetism, Helsinki University of Technology, Espoo, pp 50–53Google Scholar
  27. Loveless N (1983) The orienting response and evoked potentials in man. In: Siddle D (ed) Orienting and habituation: perspectives in human research. Wiley, New York, pp 71–108Google Scholar
  28. Loveless N, Hari R, Hamalainen M, Tiihonen J (1989) Evoked responses of human auditory cortex may be enhanced by preceding stimuli. Electroencephalogr Clin Neurophysiol 74:217–227CrossRefPubMedGoogle Scholar
  29. Loveless N, Levänen S, Jousmäki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220–228CrossRefPubMedGoogle Scholar
  30. Määttä S, Saavalainen P, Herrgard E, Pääkkönen A, Luoma L, Laukkanen E, Partanen J (2005) Event-related potentials to elementary auditory input in distractible adolescents. Clin Neurophysiol 116:142–150CrossRefPubMedGoogle Scholar
  31. May P, Tiitinen H, Sinkkonen J, Näätänen R (1994) Long-term stimulation attenuates the transient 40-Hz response. Neuroreport 5:1918–1920CrossRefPubMedGoogle Scholar
  32. Mertens R, Polich J (1997) P300 from a single-stimulus paradigm: passive versus active tasks and stimulus modality. Electroencephalogr Clin Neurophysiol 104:488–497CrossRefPubMedGoogle Scholar
  33. Näätänen R, Picton T (1987) The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 24:375–425CrossRefPubMedGoogle Scholar
  34. Näätänen R, Gaillard AW, Varey CA (1981) Attention effects on auditory EPs as a function of inter-stimulus interval. Biol Psychol 13:173–187CrossRefPubMedGoogle Scholar
  35. Nelson DA, Lassman FM (1977) Re-examination of the effects of periodic and aperiodic stimulation on the auditory-evoked vertex response. Audiology 16:409–418CrossRefPubMedGoogle Scholar
  36. Nelson DA, Lassman FM, Hoel RL (1969) The effects of variable-interval and fixed-interval signal presentation schedules on the auditory evoked response. J Speech Hear Res 12:199–209PubMedGoogle Scholar
  37. Öhman A, Lader M (1972) Selective attention and “habituation” of the auditory averaged evoked response in humans. Physiol Behav 8:79–85CrossRefPubMedGoogle Scholar
  38. Öhman A, Kaye JJ, Lader M (1972) Regular interstimulus interval as a critical determinant of short-term “habituation” of the auditory averaged evoked response. Psychon Sci 27:275–278Google Scholar
  39. Pantev C, Hoke M, Lütkenhöner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246:486–488CrossRefPubMedGoogle Scholar
  40. Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I. Evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190CrossRefPubMedGoogle Scholar
  41. Picton T, Hillyard S, Galambos R (1976) Habituation and attention in the auditory system. In: Keidel W, Neff W (eds) Handbook of sensory physiology, V. Auditory system. Springer, Berlin, pp 343–389Google Scholar
  42. Ritter W, Vaughan HG Jr, Costa LD (1968) Orienting and habituation to auditory stimuli: a study of short term changes in average evoked responses. Electroencephalogr Clin Neurophysiol 25:550–556CrossRefPubMedGoogle Scholar
  43. Roeser R, Price LL (1969) Effects of habituation on the auditory evoked response. J Aud Res 9:306–313Google Scholar
  44. Rojas DC, Walker JR, Sheeder JL, Teale PD, Reite ML (1998) Developmental changes in refractoriness of the neuromagnetic M100 in children. Neuroreport 9:1543–1547CrossRefPubMedGoogle Scholar
  45. Rosburg T (2004) Effects of tone repetition on auditory evoked neuromagnetic fields. Clin Neurophysiol 115:898–905CrossRefPubMedGoogle Scholar
  46. Rosburg T, Kreitschmann-Andermahr I, Nowak H, Sauer H (2000) Habituation of the auditory evoked field component N100m in male patients with schizophrenia. J Psychiatr Res 34:245–254CrossRefPubMedGoogle Scholar
  47. Rosburg T, Haueisen J, Sauer H (2002) Habituation of the auditory evoked field component N100m and its dependence on stimulus duration. Clin Neurophysiol 113:421–428CrossRefPubMedGoogle Scholar
  48. Rosburg T, Trautner P, Korzyukov OA, Boutros NN, Schaller C, Elger CE, Kurthen M (2004) Short-term habituation of the intracranially recorded auditory evoked potentials P50 and N100. Neurosci Lett 372:245–249CrossRefPubMedGoogle Scholar
  49. Rosburg T, Trautner P, Dietl T, Korzyukov OA, Boutros NN, Schaller C, Elger CE, Kurthen M (2005) Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain 128:819–828CrossRefPubMedGoogle Scholar
  50. Rosburg T, Trautner P, Boutros NN, Korzyukov OA, Schaller C, Elger CE, Kurthen M (2006) Habituation of auditory evoked potentials in intracranial and extracranial recordings. Psychophysiology 43:137–144CrossRefPubMedGoogle Scholar
  51. Rosburg T, Trautner P, Elger CE, Kurthen M (2009a) Attention effects on sensory gating—intracranial and scalp recordings. Neuroimage 48:554–563CrossRefPubMedGoogle Scholar
  52. Rosburg T, Trautner P, Fell J, Moxon KA, Elger CE, Boutros NN (2009b) Sensory gating in intracranial recordings—the role of phase locking. Neuroimage 44:1041–1049CrossRefPubMedGoogle Scholar
  53. Rothman HH, Davis H, Hay IS (1970) Slow evoked cortical potentials and temporal features of stimulation. Electroencephalogr Clin Neurophysiol 29:225–232CrossRefPubMedGoogle Scholar
  54. Sams M, Hari R, Rif J, Knuutila J (1993) The human auditory sensory memory trace persists about 10 sec. J Cogn Neurosci 5:363–370CrossRefGoogle Scholar
  55. Simons-Weidenmaier NS, Weber M, Plappert CF, Pilz PK, Schmid S (2006) Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway. BMC Neurosci 7:38CrossRefPubMedGoogle Scholar
  56. Soininen HS, Karhu J, Partanen J, Paakkonen A, Jousmaki V, Hanninen T, Hallikainen M, Partanen K, Laakso MP, Koivisto K, Riekkinen P Sr (1995) Habituation of auditory N100 correlates with amygdaloid volumes and frontal functions in age-associated memory impairment. Physiol Behav 57:927–935CrossRefPubMedGoogle Scholar
  57. Sokolov EN (1960) Nervous model of stimulus and the orienting reflex. Voprosy Psichologii 4:128–137Google Scholar
  58. Sörös P, Knecht S, Manemann E, Teismann I, Imai T, Lütkenhöner B, Pantev C (2001) Hemispheric asymmetries for auditory short-term habituation of tones? In: Nenonen J, Ilmoniemi RJ, Katila T (eds) Biomag 2000, Proceedings of 12th International Conference on Biomagnetism, Helsinki University of Technology, Espoo, pp 47–49Google Scholar
  59. Sörös P, Michael N, Tollkötter M, Pfleiderer B (2006) The neurochemical basis of human cortical auditory processing: combining proton magnetic resonance spectroscopy and magnetoencephalography. BMC Biol 4:25CrossRefPubMedGoogle Scholar
  60. Sörös P, Teismann IK, Manemann E, Lütkenhöner B (2009) Auditory temporal processing in healthy aging: a magnetoencephalographic study. BMC Neurosci 10:34CrossRefPubMedGoogle Scholar
  61. Thoma RJ, Hanlon FM, Moses SN, Edgar JC, Huang M, Weisend MP, Irwin J, Sherwood A, Paulson K, Bustillo J, Adler LE, Miller GA, Canive JM (2003) Lateralization of auditory sensory gating and neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160:1595–1605CrossRefPubMedGoogle Scholar
  62. Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43CrossRefPubMedGoogle Scholar
  63. Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMedGoogle Scholar
  64. Woldorff MG, Hillyard SA (1991) Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol 79:170–191CrossRefPubMedGoogle Scholar
  65. Woods DL, Elmasian R (1986) The habituation of event-related potentials to speech sounds and tones. Electroencephalogr Clin Neurophysiol 65:447–459CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Psychology, Experimental Neuropsychology UnitSaarland UniversitySaarbrückenGermany
  2. 2.Department of Neurology, Biomagnetic CenterUniversity Hospital JenaJenaGermany

Personalised recommendations